全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2005 

西藏冈底斯中东段矽卡岩铜_铅_锌多金属矿床特征及成矿远景分析

Keywords: 地质学,矽卡岩矿床,斑岩矿床,铜_铅_锌多金属矿床,矿床特征,成矿作用,冈底斯,西藏

Full-Text   Cite this paper   Add to My Lib

Abstract:

冈底斯中东段矽卡岩型铜_铅_锌多金属矿床分为甲马—林周、贡嘎—扎囊—泽当和拉萨—谢通门3个次级矿带或矿集区,区域上呈现出一定的矿化分带,以甲马—林周矿集区为主要分布区。岩矿石的硫、氢、氧、铅同位素特征表明成矿流体和矿质主要为岩浆热液来源。Re_Os同位素测年说明甲马—林周矿集区的矽卡岩成矿集中在中新世15~17Ma的较窄时间段内,与该区斑岩型铜钼矿具有相似的岩浆_构造控矿条件和深部地球动力学背景,属同一成矿系列。而冈底斯南带矽卡岩矿床可能形成于印度—亚洲板块的主碰撞期。冈底斯中东段具有良好的矽卡岩型铜多金属矿成矿地质、地球化学条件,显示有良好的找矿前景。

References

[1]  李光明, 王高明, 芮宗瑶, 等. 2003. 西藏一江两河地区成矿规律与找矿方向综合研究. 成都地质矿产研究所研究报告.
[2]  李光明, 王高明, 芮宗瑶, 等. 2003. 西藏一江两河地区成矿规律与找矿方向综合研究. 成都地质矿产研究所研究报告.
[3]  李光明, 王高明, 芮宗瑶, 等. 2003. 西藏一江两河地区成矿规律与找矿方向综合研究. 成都地质矿产研究所研究报告.
[4]  李光明, 王高明, 芮宗瑶, 等. 2003. 西藏一江两河地区成矿规律与找矿方向综合研究. 成都地质矿产研究所研究报告.
[5]  Baker T and Lang J R. 2003. Reconciling fluid inclusions, fluids process and fluid source in skarns: An example from the Bismark skarn deposit, Mexico[J]. Mineralium Deposita, 38: 474~495.
[6]  Baker T, Van A E, Ryan C, et akl. 2004. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit[J]. Geol. (Boulder), 32(2): 117~120.
[7]  Chen Y J and Chang Z S. 1996. The advances and problems in geological study and exploration on the skarn-type gold deposit[J]. Nonferrous Metal Resources and Exploration, 5(3): 129~139 (in Chinese with English abstract).
[8]  Coleman M and Hodges K. 1995. Evidence for Tibetan Plateau uplift before 14 Ma ago from a new minimum age for east-west extension[J]. Nature, 374: 49~52.
[9]  Ding L and Lai Q Z. 2003. The geological evidence for the thickening and uplift before collision in Gangdese crust: the restraint to the uplift and stretching history of Tibet Plateau implied by the aggregation of island arc[J]. Chinese Sci. Bull., 48(8): 836~842(in Chinese with English abstract).
[10]  Du A D, Zhao D M, Wang S X, et al. 2001. Precise Re-Os dating of molybdenite using Carius tube, NTIMS and ICPMS([J]. Rock and Mineral Analysis, 20 (4): 247~252(in Chinese with English abstract).
[11]  Du G S, Yao P, et al. 1998. Summarine exhalative sedimentary skarn and mineralization[M]. Chengdu: Shichuan Sci & Technol. Press(in Chinese with English abstract).
[12]  Feng X L, Guan S P, Mou C L, et al. 2001. Geological characteristics and genesis of the Jiama copper polymetallic deposit in Tibet[J]. Geol. & Geochem., 29(4): 40~48(in Chinese with English abstract).
[13]  Harrison T M, Copeland P, Kidd W S F, et al. 1995. Activation of the Nyainqentanghla shear zone: Implication for uplift of the southern Tibetan Plateau[J]. Tectonics, 14: 658~676.
[14]  Harrison T M, Yin A, Grove M, et al. 2000. Displacment history of the Gangdese thrust, Southeastern Tibet[J]. J. Geophys. Res., 105: 19211~19230.
[15]  Hou Z Q, Lu Q T, Wang A J, et al. 2003a. Continental collision and related metallogeny: A case study of mineralization inTibetan orogen[J]. Mineral Deposits, 22 (1): 319~334(in Chinese with English abstract).
[16]  Hou Z Q, Qu X M, Wang S X, et al. 2003b. Re-Os age for molybdenites from the Gangdese porphyry belt in the Tibetan plateau: implication to mineralization duration and geodynamic setting [J]. Sci. in China (Series D), 33(7): 609~618(in Chinese with English abstract).
[17]  Li C Y, et al. 2000. The main types of copper deposits in China and their metallogenetic perspective [M]. Beijing: Geol. Pub. House(in Chinese).
[18]  Li G M, Pang G T, Wang G M, et al. 2004. Evaluation and prospecting value of mineral resources in Gangdise metallogenic belt, Tibet, China [J]. Bull. Chengdu Univ. Sci. & Technol. (Sci. Ed.), 31(1): 22~27(in Chinese with English abstract).
[19]  Love D A, Clark A H and Glover J K. 2004. The lithologic, stratigraphic, and structural setting of the giant Antamina copper-zinc skarn deposit, Ancash, Peru[J]. Econ. Geol., 99: 887~916.
[20]  Megaw P K M, Ruiz J and Titley S R. 1988. High-temperature, carbonate-hosted Ag-Pb-Zn deposits of Northern Mexico[J]. Econ. Geol., 83: 1856~1885.
[21]  Meinert L D, Hedenquist J W, Satoh H, et al. 2003. Formation of anhydrous versus hydrous skarn in Cu-Au ore deposits by magmatic fluids [J]. Econ. Geol., 98: 147~156.
[22]  Meng X J, Hou Z Q, Gao Y F, et al. 2003. Development of porphyry copper-molybdenum-lead-zinc ore-forming system in east Gangdese belt, Tibet: Evidence from Re-Os age of molybdenite in Bangpu copper polymetallic deposit[J]. Mineral Deposits, 22(3): 246~252(in Chinese with English abstract).
[23]  Meng X J. 2004. The metallogeny of the Miocene Gandese porphyry copper belt in Tibetan collision orogen[Dissertation for doctor degree][D]. Tutor: Hou Z Q. Institute of Mineral Resources, CAGS(in Chinese).
[24]  Pang G T and Ding J. 2004. Geological map of Tibet plateau and adjacent areas[M]. Chengdu: Chengdu Map Pub. House(in Chinese with English Edition).
[25]  更多...
[26]  Pierce J A and Mei H. 1988. Volcanic rocks of the 1985 Tibet Geotraverse Lhasa to Golmud[M]. London: Phil. Trans. Roy. Soc. Lond. A327: 203~213.
[27]  Qu X M, Hou Z Q and Huang W. 2001. Is Gangdese porphyry copper belt the second "Yulong" copper belt[J]? Mineral Deposits, 20(4): 355~366(in Chinese with English abstract).
[28]  Shinohara H and Hedenquist J W. 1997. Constraints on magma degassing beneath the Far Southeast porphyry Cu-Au deposit, Philippines[J]. J. Petrol., 38: 1741~1752.
[29]  Xu R H, Schaer U and Allere C J. 1985. Magmatism and metamorphism in the Lhasa block (Tibet): A geochronological study [J]. J. Geol., 93: 41~57.
[30]  Yang Z M and Xie Y L. 2005. The characteristics and evolution of the ore-fluids of Qulong copper deposit in Gangdese porphyry copper deposit belt[J]. Geology and Exploration, 41(2)(in press) (in Chinese with English abstract).
[31]  Yin A and Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annu. Rev. Earth Planet. Sci, 28: 211~280.
[32]  Zheng Y Y, Wang B S, Fan Z H, et al. 2002. Analysis of tectonic evolution in the eastern section of the Gangdise Mountains, Tibet and the metallogenic potentialities of copper gold polymetal. [J]. Infor. Geol. Sci. & Technol., 21(2): 55~60(in Chinese with English abstract).
[33]  陈衍景, 常兆. 1996. 中国矽卡岩金矿床地质研究和勘查的进展与问题[J]. 有色金属矿产与勘查, 5(3): 129-139.
[34]  丁林, 来庆州. 2003. 冈底斯地壳碰撞前增厚及隆升的地质依据: 岛弧拼贴对青藏高原隆升及扩展历史的制约[J]. 科学通报, 48(8): 836-842.
[35]  杜安道, 赵敦敏, 王淑贤, 等. 2001. Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄[J]. 岩矿测试, 20 (4): 247-252.
[36]  杜光树, 姚鹏, 等. 1998. 喷流成因矽卡岩与成矿[M]. 成都: 四川科学技术出版社.
[37]  冯孝良, 管仕平, 牟传龙, 等. 2001. 西藏甲马铜多金属矿床的岩浆热液交代成因--地质与地球化学证据[J]. 地质地球化学, 29(4): 40-48.
[38]  侯增谦, 吕庆田, 王安建, 等. 2003a. 初论陆-陆碰撞与成矿作用--以青藏高原造山带为例[J]. 矿床地质, 22(4): 319~334.
[39]  侯增谦, 曲晓明, 王淑贤, 等. 2003b. 西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄: 成矿作用时限与动力学背景应用[J]. 中国科学(D辑), 33(7): 609~618.
[40]  李朝阳, 等. 2000. 中国铜矿主要类型特征及其成矿远景[M]. 北京: 地质出版社.
[41]  李光明, 潘桂棠, 王高明, 等. 2004. 西藏冈底斯成矿带矿产资源远景评价与展望[J]. 成都理工大学学报(自然科学版), 31(1): 22~27.
[42]  孟祥金, 侯增谦, 高永丰, 等. 2003. 西藏冈底斯东段斑岩铜钼铅锌成矿系统的发育时限: 帮浦铜多金属矿床辉钼矿Re-Os年龄证据[J]. 矿床地质, 22(3): 246~252.
[43]  孟祥金. 2004. 西藏碰撞造山带冈底斯中新世斑岩铜矿成矿作用研究[博士论文][D]. 导师: 侯增谦. 中国地质科学院矿产资源研究所.
[44]  潘桂棠, 丁俊, 等. 2004. 青藏高原及邻区地质图(1∶50万)[M]. 成都: 成都地图出版社.
[45]  曲晓明, 侯增谦, 黄卫. 2001. 冈底斯斑岩铜矿(化)带: 西藏第二条"玉龙"铜矿带[J]. 矿床地质, 20(4): 355~366.
[46]  杨志明, 谢玉玲. 2005. 西藏冈底斯斑岩铜矿带驱龙铜矿成矿流体特征及其演化[J]. 地质与勘探, 41(2)(印刷中).
[47]  郑有业, 王保生, 樊子珲, 等. 2002. 西藏冈底斯东段构造演化及铜金多金属成矿潜力分析[J]. 地质科技情报, 21(2): 55~60.
[48]  李光明, 王高明, 芮宗瑶, 等. 2003. 西藏一江两河地区成矿规律与找矿方向综合研究. 成都地质矿产研究所研究报告.
[49]  福建地质调查院. 2004. 2004年西藏山南地区铜多金属资源评价. 内部资料.
[50]  李光明, 王高明, 芮宗瑶, 等. 2003. 西藏一江两河地区成矿规律与找矿方向综合研究. 成都地质矿产研究所研究报告.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133