全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2005 

西藏冈底斯三处斑岩铜矿床流体包裹体及成矿作用研究

Keywords: 地球化学,成矿作用,流体包裹体,激光拉曼光谱,斑岩铜矿,冈底斯,西藏

Full-Text   Cite this paper   Add to My Lib

Abstract:

对西藏冈底斯斑岩铜矿带中的驱龙、冲江斑岩铜矿床和与斑岩有关的帮浦铜多金属矿床进行了流体包裹体岩相学、显微测温和激光拉曼探针分析。对斑岩中斑晶石英、硅化脉石英和热液矿物硬石膏内流体包裹体的观测表明,与成矿有关的流体包裹体可以分为气相包裹体、液相包裹体、含子晶的多相包裹体等3类。它们的均一温度变化较大(191~550℃),气相包裹体与含子晶多相包裹体的均一温度相近,主要集中于300~550℃之间。流体的盐度w(NaCleq)为1.91%~66.75%,含石盐子晶包裹体的盐度w(NaCleq)范围为32.70%~66.75%。激光拉曼光谱分析表明,子晶以石盐为主,并有较多的黄铜矿;气相包裹体和液相包裹体的气相中含有CO2。低密度的气相包裹体与高密度的液相包裹体、高盐度的含子晶包裹体共生,其均一温度范围一致,但盐度相差较大,指示成矿流体有不混溶作用或沸腾作用。成矿流体来自于岩浆的出溶;金属硫化物直接来源于岩浆。斑晶石英内流体包裹体中的不混溶作用与岩浆的初始沸腾有关;硅化脉石英捕获的流体包裹体与岩浆的二次沸腾有关;而硬石膏内流体包裹体的不混溶与两种不同性质流体的混合作用有关。斑晶石英中包裹体内的黄铜矿子晶是岩浆流体高金属含量的表征而不是矿化开始的标志。冈底斯成矿带内斑岩铜矿的成矿始于岩浆期后高温阶段,随后的高_中温热液阶段是流体大量沉淀矿质的重要时期。

References

[1]  Bllsnluk P M, Hacker B, Glodny J, et al. 2001. Normal faulting in central Tibet since at least 13.5 Myr ago[J]. Nature, 412:628~632.
[2]  Boiron M C, Dubessy J, Andre N, et al. 1991. Analysis of monoatomic ions in dividual fluid inclusions by laser-produced plasma emission spectroscopy[J]. Geochim. Cosmochim. Acta, 55: 917~923.
[3]  Bodnar R J. 1994. Synthetic fluid inclusions(XII): the system H2O-NaCl experimental determination of the halite liquidus and isochors for a 40wt%NaCleq solution[J]. Geochim. Cosmochim Acta, 58: 1053~1063.
[4]  Bodnar R J. 1995. Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits[J]. Mineralogical Association of Canada Short Course Series, 23: 139~152.
[5]  Candela P A and Holland H D. 1986. A mass transfer modle for copper and molybdenum in magmatic hydrothermal system: the origin of porphyry-type ore deposits[J]. Econ. Geol., 81: 1~19.
[6]  Cheng L J, Li Z, Liu H F, et al. 2001. Basic features of the east Gangdese polymetallic metallogenic belt[J]. Tibet Geology, 19(1): 43~53(in Chinese with English abstract).
[7]  Chou I M. 1987. Phase relations in the system NaCl-H2O(III): solubilities of halite in vapor-saturated liquids above 445℃ and redetermination of phase equilibrium properties in the system NaCl-H2O to 1000℃ and 1500 bars[J]. Geochim. Cosmochim. Acta, 15: 1965~1975.
[8]  Cline J S and Bodnar R J. 1994. Direct evolution of brine from a crystallizing silicic melt at the Queta, New Mexico, Molybdenum deposit[J]. Econ. Geol., 89: 1780~1802.
[9]  Cloke P L and Kesler S E. 1979. The halite trend in hydrothermal solutions[J]. Econ. Geol., 74: 1823~1831.
[10]  Coleman M and Hodges K. 1995. Evidence for Tibetan Plateau uplift before 14 Ma ago from a new minimum age for east-west extension[J]. Nature, 374: 49~52.
[11]  Crerar D A and Barnes H L. 1976. Ore solution chemistry(V): solubilities of chalcopyrite assemblages in hydrothermal solution at 200 to 350℃[J]. Econ. Geol., 71: 772~794.
[12]  Dammam K M S, Touret L R J, Rieffe C E, et al. 1996. PIXE and EM analyses of fluid inclusions in quartz crystals from the K-alteration zone of the Rosia Poieni porphyry-Cu deposit, Apuseni Mountains, Rumania[J]. European Journal of Mineralogy, 8: 1081~1096.
[13]  Dewey J F, Shackelton R M, Chang C, et al. 1988. The tectonic evolution of the Tibetan plateau[J]. Phil. Trans. Roy. Soc. Lond., A327: 379~413.
[14]  Diamond I W, Marshall D D, Jackman J A, et al. 1990. Elemental analysis of individual fluid inclusions in minerals by secondary ion mass spectrometry(SIMS): application to cation ratios of fluid inclusions in an Archaean mesothermal gold-quartz vine[J]. Geochim. Cosmochim. Acta, 54: 545~552.
[15]  Dilles J H, Solomon G G, Taylor H P J, et al. 1992. Oxygen and hydrogen isotope characteristics of hydrothermal alteration at the Ann- Mason porphyry copper deposit, Yertington, Nevada[J]. Econ. Geol., 87: 44~63.
[16]  Drummond S E and Ohmoto H. 1985. Chemical evolution and mineral deposition in boiling hydrothermal sytems[J]. Econ. Geol., 80: 126~147.
[17]  Durr S B. 1996. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, south Tibet) [J]. Geol. Soc. Am. Bull., 108: 669~684.
[18]  Eastoe, G G. 1978. A fluids inclusion study of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea[J]. Econ. Geol., 73: 721~748.
[19]  Harris N B W, Xu R, Lewis C L, et al. 1988. Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud[J]. Phil. Trans. Roy. Soc. Lond., A327: 263~285.
[20]  Harrison T M, Copeland P, Kidd W S F, et al. 1992. Raising Tibet[J]. Science, 255: 1663~1670.
[21]  更多...
[22]  Harrison T M, Yin A, Grove M, et al. 2000. Displacment history of the Gangdese thrust, Southeastern Tibet[J]. J. Geophys. Res., 105: 19211~19230.
[23]  Heinrich C A, Ryan C G, Mernagh T P, et al. 1992. Segregation of ore metals between magmatic brine and vapor: a fliud inclusion study using PIXE microanalysis[J]. Econ. Geol., 87: 1566~1583.
[24]  Hedenquist J W and Richards J P. 1998. The finfluence of geochemical techniques on the development of genetic models for porphyry copper deposits[J]. Rev. in Econ. Geol., 10: 235~256.
[25]  Hezarkhani A, Williams-Jones A E and Gammons C H. 1999. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran[J]. Mineralium Deposita, 34: 770~783.
[26]  Hou Z Q, Qu X M, Huang W, et al. 2001. The Gangdese porphyry copper belt: the second significant porphyry belt in Tibetan plateau[J]. Geology in China, 28: 27~29(in Chinese with English abstract).
[27]  Li Y Q, Rui Z Y ang Cheng L X. 1981. Fluid inclusions and mineralization of the Yulong porphyry copper (molybdenum) deposit[J]. Acta Geologica Sinia, 55(3): 216~312(in Chinese with English abstract).
[28]  Liu B and Shen K. 1999. Fliud inclusion thermodynamics[M]. Beijing: Geol. Pub. House (in Chinese with English abstract).
[29]  Mavrogenes J A, Bodnar R J, Anderson A J, et al. 1995. Assessment of the uncertainties and limitations of quantitative elemental analysis of individual fluid inclusion using synchrotron X-ray fluorescence(SXRF) [J]. Geochim. Cosmochim. Acta, 59: 3987~3995.
[30]  Meng X J, Hou Z Q, Gao Y F, et al. 2003. Re-Os dating for molybdenite from Qulong porphyry copper deposit in Gangdese metallogenic belt, Xizang and its metallogenic significance[J]. Geological Review, 49(6): 660~666(in Chinese with English abstract).
[31]  Nash J T. 1976. Fluid inclusion petrology data from porphyry copper deposits and application to exploration[A]. U.S. Geol. Survey Prof. Paper[C]. 907-D, 16.
[32]  Ni P, Rao B, Ding J Y, et al. 2003. Studies on the synthetic fluid inclusions and their application to Laser Raman spectrum analysis field[J]. Acta Petrologica Sinica, 19(2): 319~326(in Chinese with English abstract).
[33]  Qu X M, Hou Z Q, Huang W. 2001. Gangdese porphyry copper belt: the second Yulong porphyry copper belt in Tibrt[J]? Mineral Deposits, 20(4): 355~366(in Chinese with English abstract).
[34]  Roedder E. 1984. Fliud inclusion: reviews in mineralogy[J]. Mineralogical Society of America, 12: 644.
[35]  Rui Z Y, Huang C K, Qi G M, et al. 1984. Porphyry copper (molybdenum) deposits of China[M]. Beijing: Geol. Pub. House(in Chinese).
[36]  Schǎer U, Xu R H and All(e)re C J. 1984. U-Pb geochronology of the Gangdese (Transhimalaya) plutonism in the Lhasa-Xizang region, Tibet[J]. Earth Planet. Sci. Lett., 69: 311~320.
[37]  Sheets R W, Nesbitt B E and Muehlenbachs K. 1996. Meteoric water component in magmatic fluids from porphyry copper mineralization, Babine Lake area, British Columbia[J]. Geol., 24: 1091~1094.
[38]  Taylor H P J. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Econ. Geol., 60: 834~883.
[39]  Ulrich T, Günther D and Heinrich C A. 1999. Gold concentrations of magmatic brines and the metal budget of porphyry copper depoits[J]. Nature, 399: 676~679.
[40]  Ulrich T and Heinirich C A. 2001. Geology and alteration geochemistry of the porphyry Cu-Au deposit at Bajo de la Alumbrera Argentina[J]. Econ. Geol., 96: 1719~1742.
[41]  Var\'yash L N and Rekharskiy V I. 1981. Behaiour of Cu(I) in Chloritde solution[J]. Geochem. Int., 7: 1003~1008.
[42]  Wilson J W J, Kelser S E, Cloke P L, et al. 1980. Fluids inclusion geochemistry of the Granisle and Bell porphyry copper deposit, Bristish Columbia[J]. Econ. Geol., 75: 45~61.
[43]  Xu R H, Schǎer U and All(e)re C J. 1985. Magmatism and metamorphism in the Lhasa block(Tibet): a geochronological study[J]. J. Geol., 93: 41~57.
[44]  Yin A and Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annu. Rev. Earth Planet. Sci., 28: 211~280.
[45]  Yin J, Xu J, Liu C, et al. 1988. The Tibetan plateau: regional stratigraphic context and previous work[J]. Phil. Trans. Roy. Soc. Lond., A327: 5~52.
[46]  Zhang Q L, Qu X M, Xu W Y, et al. 2003. Study of the inclusions from Nanmu porphyry copper deposit in Tibet[J]. Acta Petrologica Sinica, 19(2): 251~259 (in Chinese with English abstract).
[47]  Zotov A V, Kudrin A V, Lein K A, et al. 1995. Experimental studies of the solubility and complexing of selected ore elements(Au,Ag,Cu,Mo,As,Sb,Hg) in aqueoue solutions[A]. In: Shmuloich K I, Yardley B W D, Gonchar G G, eds. Fliuds in the crust, equilibrium and transport properties[C]. London: Chapman and Hall. 95~132.
[48]  程力军, 李志, 刘鸿飞, 等. 2001. 冈底斯东段铜多金属成矿带的基本特征[J]. 西藏地质, 19(1):43~53.
[49]  侯增谦, 曲晓明, 黄卫, 等. 2001. 冈底斯斑岩铜矿成矿带有望成为西藏第二条玉龙铜矿带[J]. 中国地质, 28: 27~29.
[50]  李荫清, 芮宗瑶, 程来仙. 1981. 玉龙斑岩铜钼矿床的流体包裹体及成矿作用研究[J]. 地质学报, 55(3): 216~312.
[51]  刘斌, 沈昆. 1999. 流体包裹体热力学[M]. 北京: 地质出版社.
[52]  孟祥金, 侯增谦, 高永丰, 等. 2003. 西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义[J]. 地质论评, 49(6): 660~666.
[53]  倪培, 饶冰, 丁俊英, 等. 2003. 人工合成包裹体的实验研究及其在激光拉曼探针测定方面的应用[J]. 岩石学报, 19(2): 319~326.
[54]  曲晓明, 侯增谦, 黄卫. 2001. 冈底斯斑岩铜矿成矿带:西藏第二条玉龙铜矿带[J]? 矿床地质, 20(4): 355~366.
[55]  芮宗瑶, 黄崇轲, 齐国明, 等. 1984. 中国斑岩铜(钼)矿床[M]. 北京: 地质出版社.
[56]  张绮玲, 曲晓明, 徐文艺, 等. 2003. 西藏南木斑岩铜矿床的流体包裹体研究[J]. 岩石学报, 19(2): 251-259.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133