全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2012 

新疆阿吾拉勒成矿带西段铜矿床碳、氧、硫、铅同位素研究——成矿物质来源及成矿环境探讨

Keywords: 地球化学,稳定同位素,成矿物质来源,成矿环境,阿吾拉勒成矿带西段,新疆

Full-Text   Cite this paper   Add to My Lib

Abstract:

新疆阿吾拉勒成矿带西段的众多铜矿床可分为2种类型,即中、南部的次火山岩型和北部的中-低温热液脉型。文章对从南到北的2种类型的5个铜矿床(穷布拉克、奴拉赛、群吉、群吉萨依、109)进行了系统的碳、氧、硫、铅同位素研究,探讨了成矿物质来源及成矿环境。测试结果表明:次火山岩型矿床内硫化物的δ34S值变化很小,南部和中部的矿床分别为3.4‰~4.4‰和-1.6‰~0.2‰,反映出其来源单一,以岩浆源或地幔源为主;中-低温热液脉型矿床内硫化物的δ34S值变化较大,为-18‰~8.9‰,具有多源性。次火山岩型矿床内方解石的δ13C值为-1.44‰~0.8‰,δ18O值为11.87‰~16.99‰,可能为深源流体与碳酸盐岩地层发生一定反应的结果;中-低温热液脉型矿床内方解石的δ13C值为-10.1‰~-3.2‰,δ18O值为9.63‰~16.27‰,整体以幔源为主。中-低温热液脉型铜矿床内矿石铅为正常铅,以地幔铅占主导地位;赋存于酸性次火山岩中的次火山岩型铜矿床的矿石铅为富含放射性成因铅的异常铅,来源于前寒武系基底岩石;赋存于基性次火山岩中的次火山岩型铜矿床的矿石铅为壳幔混合铅,受到了地壳物质的强烈混染。这2种类型铜矿床的成矿物质来源表现出从南到北的明显差异,这种差异与各矿床赋矿地层和岩性组合的不同有很好的对应关系,反映了铜矿带南北成矿环境的不同。由于该区与铜矿有关的陆相(次)火山岩为晚石炭世-二叠纪伊犁古裂谷演化的产物,这可能揭示了区域成矿与二叠纪的裂谷演化紧密相关。在裂谷演化的不同阶段,该铜矿带南部和北部的构造体系具有不同的开放程度,从而形成了不同的火山岩组合和沉积地层,即矿源层。矿源层的差异和火山活动的强弱决定了在裂谷带南北不同部位形成了不同类型特征的铜矿床。

References

[1]  莫江平,蔡宏渊.1997. 新疆穷布拉克铜矿床成矿模式[J]. 矿产与地质,11(1):26-31.
[2]  任秉琛,邬介人. 2004. 西天山阿吾拉勒二叠纪陆相长英质火山岩铜银矿矿床模式[J]. 西北地质,37(3): 51-55.
[3]  宋志瑞,肖晓林,罗春林,吴明仁,凌联海,程春华. 2005. 新疆伊宁盆地尼勒克地区二叠纪地层研究新进展[J]. 新疆地质, 23(4): 334-338.
[4]  徐启东,李建威. 2003. 云南兰坪北部铜多金属矿化区成矿流体流动与矿化分带--流体包裹体和稳定同位素依据[J].矿床地质,22(4): 365-376.
[5]  姚金炎. 1993. 新疆阿吾拉勒山西段陆相火山岩地区铜矿地质特征[J]. 有色金属矿产与勘查,2(5): 277-283.
[6]  赵 军,张作衡,张 贺,刘 敏,朱维娜. 2012. 新疆阿吾拉勒山西段穷布拉克铜矿床流体包裹体和碳氧硫同位素研究[J]. 中国地质,39(5): 1345-1358.
[7]  更多...
[8]  赵振华,白正华,熊小林,梅厚钧,王一先. 2003. 西天山北部古生代火山-浅侵位岩浆岩40Ar/39Ar同位素定年[J]. 地球化学,32(4):317-327.
[9]  赵振华,王 强,熊小林,张海祥,牛贺才,许继峰,白正华,乔玉楼. 2006. 新疆北部的两类埃达克岩[J]. 岩石学报,22(5):1249-1265.
[10]  张 贺,刘 敏,赵 军,朱维娜. 2012. 新疆阿吾拉勒山奴拉赛铜矿流体包裹体和稳定同位素研究[J]. 矿床地质,31(5): 1087-1100.
[11]  张 乾,潘家永,邵树勋.2000. 中国某些金属矿床矿石铅来源的铅同位素诠释[J]. 地球化学,29(3):231-238.
[12]  张作衡,王志良,左国朝. 2008. 新疆西天山地质构造演化及铜金多金属矿床成矿环境[M]. 北京:地质出版社. 1-14.
[13]  郑永飞,陈江峰. 2000. 稳定同位素地球化学[M]. 北京:科学出版社. 50-54.
[14]  郑永飞. 2001. 稳定同位素体系理论模式及其矿床地球化学应用[J]. 矿床地质,20(1):57-71.
[15]  朱永峰,何国琦.2004. 西南天山大地构造框架与早石炭世火山活动[A]. 中国新疆天山地质与矿产论文集[C].北京:地质出版社. 29-39.
[16]  朱炳泉,李献华,戴 谟. 1998. 地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M].北京: 科学出版社. 216-230.
[17]  左国朝,张作衡,王志良,刘 敏,王龙生. 2008. 新疆西天山地区构造单元划分、地层系统及其构造演化[J]. 地质论评, 54(6): 748-767.
[18]  Anderson T and Knudsen T L. 2000. Crustal contaminants in the Permian Oslo Rift, South Norway: Constraints from Precambrian geochemistry[J]. Lithos, 53: 247-264.
[19]  Anderson B R and Gemmell J B. 2002. Lead isotope evolution of mineral deposits in the Proterozoic Throssell group, western Australia[J]. Econ. Geol., 97: 897-911.
[20]  Bouse R M, Ruiz J R and Titley S R. 1999. Lead isotope compositions of Late Cretaceous and Early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits[J]. Econ. Geol., 94: 211-244.
[21]  Cannon R S, Pierce A P, Antweiler J C and Buck K L. 1961. The data of lead isotope geology related to problems of ore genesis[J]. Econ. Geol., 56: 1-38.
[22]  Caron C, Lancelot J, Omenetto P and Orgeval J J. 1997. Roles of the Sardic tectonic phase in the metallogenesis of SW Sardinia (Iglesiente): Lead isotope evidence[J]. European Journal of Mineralogy, 9: 1005-1016.
[23]  Chiaradia M. 2004. Metal sources in mineral deposits and crustal rocks of ecuador (1° N-4° S): A lead isotope synthesis[J]. Econ. Geol., 99: 1085-1106.
[24]  Seal R R. 2006. Sulfur isotope geochemistry of sulfide minerals[J]. Reviews in Mineralogy and Geochemistry, 61: 633-677.
[25]  Staecy J S and Kramers J D. 1975. Approximation of terrestrial lead isotope evolution by a two stage model[J]. Earth and Planet Science Letters, 26(2): 207-221.
[26]  车自成,刘 良,刘洪福,罗金海. 1996. 论伊犁古裂谷[J]. 岩石学报, 12(8): 478-490.
[27]  陈义兵, 胡霭琴, 张国新, 张前锋. 1999. 西天山前寒武纪天窗片麻岩的锆石U-Pb年龄及Nd-Sr同位素特征[J]. 地球化学, 28(6): 515-520.
[28]  陈义兵, 胡霭琴, 张国新, 张前锋. 2000. 西南天山前寒武纪基底时代和特征:锆石U-Pb年龄和Nd-Sr同位素组成[J]. 岩石学报, 16(1): 91-98.
[29]  耿文辉,饶玉学,姚金炎. 2004. 中国东部次火山岩型铜银多金属矿床找矿评价标志[J]. 地质与勘探, 40(3): 1-4.
[30]  胡霭琴, 张国新, 陈义兵, 张前锋. 2001. 新疆大陆基底分区模式和主要地质事件的划分[J]. 新疆地质, 19(1): 12-19.
[31]  姜常义,吴文奎,谢广成,李伍平. 1992. 阿吾拉勒山西段二叠纪火山岩组合与构造环境分析[J]. 西安地质学院学报,14(4): 1-8.
[32]  姜常义,吴文奎,张学仁,崔尚森. 1995. 从岛弧向裂谷的变迁——来自阿吾拉勒地区火山岩的证据[J]. 岩石矿物学杂志, 14(4): 289-300.
[33]  李华芹,谢才富,常海亮. 1998. 新疆北部有色贵金属矿床成矿作用年代学[M]. 北京: 地质出版社. 195-201.
[34]  李继磊,苏 文,张 喜,刘 新. 2009. 西天山阿吾拉勒西段麻粒岩相片麻岩锆石Cameca U-Pb年龄及其地质意义[J].地质通报,28(12): 1852-1862.
[35]  李永军,李注苍,佟丽莉,高占华,佟黎明. 2010.论天山古洋盆关闭的地质时限[J].岩石学报,26(10): 2905-2912.
[36]  刘家军,何明勤,李志明,刘玉平,李朝阳,张 乾,杨伟光,杨爱平. 2004. 云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义[J]. 矿床地质,23(1): 1-10.
[37]  罗 勇,廖思平,杨武斌,单 强,周昌平. 2011. 阿吾拉勒山琼布拉克铜矿床流体包裹体及碳氧同位素研究[J]. 矿床地质,30(3):547-556.
[38]  毛景文,赫 英,丁悌平. 2002. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据[J]. 矿床地质,21(2):121-128.
[39]  莫江平,黄明扬,覃龙芳,卢汉堤. 1996. 新疆阿吾拉勒陆相火山岩型铜矿成矿研究[J].矿产与地质,10(4):26-31.
[40]  Doe B R, Steven T A, Delevaux M H, Stacey J S, Lipman P W and Fisher F S. 1979. Genesis of ore deposits in the San Juan volcanic field, southwestern Colorado: Lead isotope evidence[J]. Econ. Geol., 74: 1-26.
[41]  Faure G and Mensing T M. 2005. Isotopes: Principles and applications (the third edition)[M]. NewYork: John Wiley & Sons. 256-283.
[42]  Gao J, Long L L, Klemd R, Qing Q, Liu D Y, Xiong X M, Su W, Liu W, Wang Y T and Yang F Q. 2009. Tectonic evolution of the South Tianshan orogen and adjacent regions, NW China: Geoche mical and age constraints of granitoid rocks[J]. International Journal of Earth Science, 98(6): 1221-1238.
[43]  Harkins S A and Appold M S. 2008. Lead isotope constraints on the origin of nonsulfide zinc and sulfide zinc-lead deposits in the flinders ranges, south Australia[J]. Econ. Geol., 103: 353-364.
[44]  Hoefs J. 2009. Stable isotope geochemistry[M]. Berlin: Springer-Verlag. 48-53.
[45]  Kamona A F, Lévêque J, Fridrich G and Haack U. 1999. Lead isotopes of the carbonate-hosted Kabwe, Tsumeb, and Kipushi Pb-Zn-Cu sulphide deposits in relation to Pan African orogensis in the Damaran-Lufilian Fold Belt of Central Africa[J]. Mineralium Deposita, 34: 273-283.
[46]  Neumann E R, Tilton G R and Tuen E. 1988. Sr, Nd and Pb isotope geochemistry of the Oslo rift igneous province, southeast Norway[J]. Geochim. Cosmochim. Acta, 52: 1997-2007.
[47]  Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Econ. Geol., 67: 551-578.
[48]  Ohmoto H and Rye R O. 1979. Isotopes of sulfur and carbon[A]. In: Geochemistry of hydrothermal ore deposits[M]. New York: John Wiley and Sons. 509-567.
[49]  Oppenheimer C, Scaillet B and Martin R S. 2011. Sulfur degassing from volcanoes: Source conditions, surveillance, plume chemistry and Earth system impacts[J]. Reviews in Mineralogy and Geochemistry, 73: 363-421.
[50]  Puig A. 1988. Geologic and metallogenic significance of the isotopic composition of lead in galenas of the Chilean Andes[J]. Econ. Geol., 83: 843-858.
[51]  Rye R O. 2005. A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems[J]. Chmical Geology, 215: 5-36.
[52]  Seal R R, Alpers C N and Rye R O. 2000. Stable isotope systematics of sulfate minerals[J]. Reviews in Mineralogy and Geochemistry, 40(1): 541-602.
[53]  Stacey J S and Hedlund D C. 1983. Lead isotopic compositions of diverse igeous rocks and ore deposits from southwestern New Mexico and their implications for early Proterozoic crustal evolution in the western United States[J]. Geological Society of America Bulletin, 94: 43-57.
[54]  Townley B K and Godwin C I. 2001. Isotope characterization of lead in galena from ore deposits of the Aysen Region, southern Chile[J]. Minerlium Deposita, 36: 45-57.
[55]  Zartman R E and Doe B R. 1981. Plumbotectonics-the model[J]. Tectonophysics, 75: 135-162.
[56]  Zhao Z H, Xiong X L, Wang Q, Wyman D A, Bao Z W, Bai Z H and Qiao Y L. 2008. Underplating-related adakites in Xinjiang Tianshan, China[J]. Lithos, 102: 374-391.
[57]  Zheng J P, Griffin W L, O\'Reilly S Y, Zhang M, Liou J G and Pearson N. 2006. Granulite xenoliths and their zircons, Tuoyun, NW China: Insights into southwestern Tianshan lower crust[J]. Precambrian Research, 145: 159-181.
[58]  Zheng Y F and Hoefs J. 1993. Effects of mineral precipitation on the sulfur isotope composition of hydrothermal solutions[J]. Chemical Geology, 105: 259-269.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133