全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2012 

云南哈播斑岩铜(-钼-金)矿床流体包裹体研究

Keywords: 地球化学,流体包裹体,流体演化,斑岩铜矿,云南哈播

Full-Text   Cite this paper   Add to My Lib

Abstract:

哈播斑岩Cu-(Mo-Au)矿床产于哀牢山富碱斑岩带的南段,形成于青藏高原后碰撞阶段构造转换环境,属于陆-陆碰撞型斑岩矿床。根据脉体的交切关系,确定哈播矿床各种脉的演化序列为早期石英脉→石英-黄铜矿脉→石英-辉钼矿脉。脉中流体包裹体的岩相学、显微测温和激光拉曼光谱分析等研究结果显示,各期脉中均有富气相包裹体、富液相包裹体和含子矿物多相包裹体,各种包裹体的气相均含有CO2、SO2、H2O等气体。各期脉中多种包裹体并存并具有相似的均一温度范围,富液相包裹体均一温度149~427℃,盐度ω(NaCleq)6.0%~15.0%;富气相包裹体均一温度205~405℃,盐度ω(NaCleq)3.4%~19.0%;含子矿物多相包裹体均一温度305~516℃,盐度ω(NaCleq)33.5%~61.0%。哈播矿床的初始成矿流体由稳定共存、不混溶的低盐度流体和高盐度流体组成,高盐度流体是哈播矿床成矿元素迁移的主要载体。成矿流体在400℃左右发生"二次沸腾"、分相,温度下降和挥发分持续逃逸可能是Cu-Au成矿的诱因。Mo元素在成矿流体多次沸腾、分相过程中,持续优先分配进入高盐度流体中而逐步富集;温度下降,使含钼硫化物在流体中溶解度降低、沉淀,形成石英-辉钼矿±黄铜矿脉。

References

[1]  侯增谦, 潘桂棠, 王安建, 莫宣学, 田世洪, 孙晓明, 丁 林, 王二七, 高永丰, 谢玉玲, 曾普胜, 秦克章, 许继峰, 曲晓明, 杨志明, 杨竹森, 费红彩, 孟祥金, 李振清. 2006. 青藏高原碰撞造山带: Ⅱ晚碰撞转换成矿作用[J]. 矿床地质, 25(5): 521-543.
[2]  侯增谦,杨志明. 2009. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿 概念模型[J]. 地质学报, 83(12): 1779-1817.
[3]  冷成彪, 张兴春, 秦朝建, 王守旭, 任 涛, 王外全. 2008. 滇西北雪鸡坪斑岩铜矿流体包 裹体初步研究[J]. 岩石学报, 24(9): 2017-2028.
[4]  祝向平, 莫宣学, White N C, 张 波, 孙明祥, 王淑贤, 赵思礼, 杨 勇. 2009. 云 南 哈播斑岩型铜(-钼-金)矿床地质与成矿背景研究[J]. 地质学报, 83(12): 1915-1928.
[5]  Audétat A and Gunther D. 1999. Mobility and H2O-loss from fluid inclusions in natural quartz crystals[J]. Contributions to Mineralogy and Petrology, 137: 1-14.
[6]  Becker S P, Fall A and Bodnar R J. 2008. Synthetic fluid inclusions. XVII. PVTX properties of high salinity H2O-NaCl solutions(>30 wt% NaCl): Application to f luid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits[J]. Econ. Geol., 103: 539-554.
[7]  Bodnar R J and Vityk M O. 1994. Interpretation of microthermometric data for H2O-NaCl fluid inclusions[A]. In: Vivo B De and Frezzotti M L, eds. Fluid inclu sions in minerals, methods and applications[C]. Pub. by Virginia Tech., Blacks burg V A. 117-130.
[8]  Bodnar R J, Burnham C W and Sterner S M. 1985. Synthetic fluid inclusions innatu ral quartz. III. Determination of phase equilibrium properties in the system H2O-NaCl to 1 000℃ and 1 500 bars[J]. Geochimica et Cosmochimica Acta, 49: 186 1-1873.
[9]  Bodnar R J. 1995. Fluid inclusion evidence for a magmatic source for metals in p orphyry copper deposits[J]. Mineralogical Association of Canada, Short Course Volume, 23: 139-152.
[10]  Haas J L. 1976. Physical properties of the coexisiting phases and thermodynamic properties of the H2O component in boiling NaCl solutions[J]. U. S. Geologic al Survey Bulletin, 1421A: 1-73.
[11]  Hall D L, Sterner S M and Bodnar R J. 1988. Freezing point depression of NaCl+KC l+H2O solution[J]. Econ. Geol., 83(1): 197-202.
[12]  Heinrich A C. 2007. Fluid-fluid interactions in magmatic-hydrothermal ore format ion[J]. Reviews in Mineralogy and Geochemistry, 65: 363-387.
[13]  Hou Z Q, Xie Y L, Xu W Y, Li YQ, Zhu X K, Zaw K, Beaudoin G, Rui Z Y, Huang W an d Luobu C R. 2007. Yulong deposit, Eastern Tibet: A high-sulfidation Cu-Au porph yry copper deposit in the eastern Indo-Asian collision zone[J]. International Geology Review, 49: 23-258.
[14]  Klemm L, Pettke T, Heinrich C㈠ぁ????ㄠぃち瑭桰??渠湅椮瘠攲爰猰愷爮礠?獹灤敲捯楴慨汥?灭慡灬攠牥??噬慵灴潩?牮?瑯牦愠湴獨瀠潥爠瑅?漠晔?浮敩瑥慮汴獥?慤湥摰?瑳桩整?昨潃牨浩慬瑥椩漺渠?潯晲?浨慹杲浹愠瑃極挭?桯礠摯牲潥琠桤敥牰浯慳汩?潩牯敮?摦敲灯潭猠楬瑯獷嬭?嵡???捩潴湹???敡潧汭?????て?????????ㄠ??on Geol., 102: 1021-1045.
[15]  Landtwing M R, Pettke T, Halter W E, Heinrich C A, Redmond P B and Einaudi M T. 2005. Causes for Cu-Fe-sulfide deposition in the Bingham porphyry Cu-Au-Mo depos it, Utah: Combined SEM-cathodoluminescence petrography and LA-ICPMS analysis of fluid inclusions[J]. Earth and Planetary Science Letters, 235: 229-243.
[16]  Redmond P B, Einaudi M T, Inan E E, Landtwing M R and Heinrich C A. 2004. Copper deposition by fluid cooling in intrusion-centered systems: New insights from th e Bingham porphyry ore deposit, Utah[J]. Geology 32: 217-220.
[17]  Richards J P. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Pr oducts of remelting of subduction-modified lithosphere[J]. Geology, 37: 247-250.
[18]  Rodder E and Bodnar R J. 1980. Geological pressure determinations from fluid inc lusion studies[J]. Annual Review of Earth and Planetary Sciences, 8: 263-301.
[19]  Rusk B, Reed M H, Dilles J H and Klemm L. 2004. Compositions of magmatic-hydroth ermal fluids determined by LA-ICPMS of fluid inclusions from the porphyry copper -molybdenum deposit at Butte, Montana[J]. Chemical Geology, 210: 173-199.
[20]  更多...
[21]  Ulrich T, Günther D and Heinrich C A. 1999. Gold concentrations of magmatic bri nes and the metal budget of porphyry copper deposits[J]. Nature, 399: 676-679.
[22]  Ulrich T, Günther D and Heinrich C A. 2001. The Evolution of a porphyry Cu-Au d eposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, A rgentina [J]. Econ. Geol., 97: 1889-1920.
[23]  Urusova M A. 1975. Volume properties of aqueous solutions of sodium chloride at elevated temperatures and pressures[J]. Russian Journal of Inorganic Chemistry , 20: 1717-1721.
[24]  Williams-Jones A E and Heinrich C A.
[25]  Klemm L, Pettke T and Heinrich C A. 2008. Fluid and source magma evolution of th e Questa pophyry Mo deposit, New Mexico, USA [J]. Mineralium Deposita, 43: 533 -552.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133