全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2012 

拉萨地块西段中新世赛利普超钾质火山岩富集地幔源区和岩石成因:Li同位素制约

Keywords: 地球化学,超钾质火山岩,Li同位素,地幔源区,岩石成因,赛利普,青藏高原

Full-Text   Cite this paper   Add to My Lib

Abstract:

作为一种"非传统稳定同位素",锂同位素地球化学研究已经成为近年来国际上研究的热点之一。文章成功应用锂同位素对青藏高原西南部赛利普超钾质火山岩进行了示范研究。研究表明,赛利普超钾质火山岩的ω(Li)为11.2×10-6~22.9×10-6,同位素组成δ7Li为-1.2‰~+3.5‰,平均值为0.2‰,与平均上地壳的相当。超钾质火山岩的锂同位素组成与岩浆结晶分异程度参数之间不存在任何相关性,这表明在超钾质火山岩结晶分异过程中没有发生明显的锂同位素分馏,锂同位素组成特征反映了其形成时的源区特征。超钾质火山岩的锂同位素组成变化范围达4.7‰,并且与Pb-Sr-Nd同位素和岩浆结晶分异参数之间亦无任何相关性,表明锂同位素异常可能反映了不均匀源区岩石特征。通过计算模拟以及与前人的类似研究成果进行对比,笔者认为俯冲印度地壳而不是特提斯洋壳(包括沉积物)的流体/熔体参与了超钾质火山岩的源区富集,并在此基础上提出了超钾质火山岩成因模式。

References

[1]  陈建林,许继峰,王保弟,唐志强. 2010. 青藏高原拉萨地块新生代超钾质岩与南北 向地堑成因关系[J]. 岩石矿物学杂志,29(4):341-354.
[2]  王保弟,陈陵康,许继峰,刘鸿飞,陈建林,唐志强. 2011. 拉萨地块麻江地区具有"超钾质" 成分的钾质火山岩的识别及成因[J]. 岩石学报,27(6):1662-1674.
[3]  肖应凯,祁海平,王蕴慧,刘卫国. 1993. 察尔汗首采区卤水中锂同位素组成盐湖研究[J]. 盐湖研究,1(3):52-56.
[4]  肖应凯,祁海平,王蕴慧,金 琳. 1994. 青海柴达木湖卤水、沉积物和水源中锂同位素组成 [J]. 地球化学,23(4):329-338.
[5]  赵志丹,莫宣学,罗照华,周 肃,董国臣,王亮亮,张凤琴. 2003. 印度-亚洲俯冲带结构—— 岩浆作用证据[J]. 地学前缘,10(3):149-157.
[6]  赵志丹,莫宣学,Nomade S, Renne P R, 周 肃,董国臣,王亮亮,朱弟成,廖忠礼. 2006. 青 藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义[J]. 岩石学报,22(4):787-794.
[7]  赵志丹,莫宣学,朱弟成,Niu Y L,董国臣,周 肃,廖忠礼,DePaolo D J. 2009. 西藏拉萨地 块西部扎布耶茶卡火山岩的成因与意义[J]. 地质通报,28(12):1730-1740.
[8]  Agostini S,Ryan J G,Tonarini S and Innocenti F. 2008. Drying and dying o f a subducted slab: Coupled Li and B isotope variations in Wes-tern Anatolia C enozoic Volc anism[J]. Earth and Planetary Science Letters,272:139-147.
[9]  Scholz F,Hensen C,Reitz A,Romer R L,Liebetrau V,Meixner A,Weise S M and Haeckel M. 2009. Isotopic evidence (87Sr/86Sr, 7Li) for altera tion of the oceanic crust at deep-rooted mud volcanoes in the Gulf of Cadiz, NE Atlantic Ocean[J]. Geoch imica et Cosmochimica Acta,73:5444-5459.
[10]  Schuessler J A, Schoenberg R and Sigmarsson O. 2009. Iron and lithium isotope sy stematics of the Hekla volcano, Iceland-evidence for stable Fe isotope fractiona tion during magma differentiation[J]. Chem. Geol.,258:78-91.
[11]  Sighinolfi G P and Gorgoni C. 1978. Chemical evolution of high grade metamorphic rocks:Anatexis and remotion of material from granulite terranes[J]. Chem. Geo l.,22:157-176.
[12]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic ba salts:Implications for the mantle composition and processes[A]. In:Saunders A D and Norry M J, eds. Magmatism in Ocean Basins[C]. Geol. Soc. London Spec. Pu b. 313-345.
[13]  Tang Y J,Zhang H F and Ying J F. 2007a. Review of the lithium isotope system as a geochemical tracer[J]. International Geology Review,49:374-388.
[14]  Tang Y J,Zhang H F,Nakamura E,Moriguti T,Kobayashi K and Ying J F. 2007b. Lithiu m isotopic systematics of peridotite xenoliths from Hannuoba, North China Craton :Implications for melt-rock interaction in the considerably thinned lithospheric mantle[J]. Geochimica et Cosmochimica Acta,71:4327-4341.
[15]  Tang Y J,Zhang H F and Ying J F. 2010. A brief review of isotopically light Li-a feature of the enriched mantle[J]. International Geology Review,52:964-976.
[16]  Tappinnier P,Xu Z,Rogers F,Meyer B,Arnaud N,Wittlinger G and Yang J. 2001. Obliq ue stepwise rise and growth of the Tibet plateau[J]. Science,294:1671-1677.
[17]  Teng F Z,McDonough W F,Rudnick R L,Dalpé C,Tomascak P B,Chappell B W and Gao S. 2004. Lithium isotopic composition and concentration of the upper continental c rust[J]. Geochimica et Cosmochimica Acta,68:4167-4178.
[18]  Teng F Z,Rudnick R L,McDonough W F and Wu F Y. 2009. Lithium isotopic systematic s of A-type granites and their mafic enclaves:Further constraints on the Li isot opic composition of the continental crust[J]. Chem. Geol.,262:370-379.
[19]  Tian S H,Hou Z Q,Su A N,Hou K J,Hu W J,Li Z Z,Zhao Y,Gao Y Y,Li Y H,Yang D and Y ang Z S. 2012. Separation and precise measurement of lithium isotopes in three r eference materials using MC-ICPMS[J]. Acta Geologica Sinica (English edition)( in press).
[20]  Tilmann F,Ni J and INDEPTH III Seismic Team. 2003. Seismic ima-ging of the dow nwelling Indian lithosphere beneath Central Tibet[J]. Science,300:1424-1427.
[21]  Tomascak P B and Langmuir C H. 1999a. Lithium isotope variability in MORB[A]. EOS,80:F1086-1087.
[22]  Tomascak P B,Tera F,Helz R T and Walker R J. 1999b. The absence of lithium isoto pe fractionation during basalt differentiation:New measurements by multicollecto r sector ICP-MS[J]. Geochimica et Cosmochimica Acta,63: 907-910.
[23]  Tomascak P B. 2004. Developments in the understanding and application of lithium isotopes in the earth and planetary sciences[A]. In:Johnson C,Beard B,Albared e F,eds. Geochemistry of non-traditional isotopes systems[C]. America:Mineralo gi cal Society of America geochemical society.153-195.
[24]  Turner S,Hawkesworth C,Liu J Q,Rogers N,Kelley S and van Calsteren P. 1993. Timi ng of Tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 364 : 50-54.
[25]  Turner S,Arnaud N,Liu J,Rogers N,Hawkesworth C,Harris N and Kelley S. 1996. Post -collision, shoshonitic volcanism on the Tibetan Plateau:Implications for convec tive thinning of the lithosphere and the source of ocean island basalts[J]. Jo urnal of Petrology,37:45-71.
[26]  Vigier N,Gislason S R,Burton K W,Millot R and Mokadem F. 2009. The relationship between riverine lithium isotope composition and silicate weathering rates in Ic eland[J]. Earth and Planetary Science Letters,287:434-441.
[27]  Vils F,Tonarini S,Kalt A and Seitz H M. 2009. Boron,lithium and strontium isotop es as tracers of seawater-serpentinite interaction at Mid-Atlantic ridge, ODP Le g 209[J]. Earth and Planetary Science Letters,286:414-425.
[28]  Vlastélic I,Koga K,Chauvel C,Jacques G and Télouk P. 2009. Survival of lithium isotopic heterogeneities in the mantle supported by HIMU-lavas from Rurutu Isla nd, Austral Chain[J]. Earth and Planetary Science Letters,286,456-466.
[29]  Wan X,Jansa L F and Sarti M. 2002. Cretaceous and Paleogene boundary strata in s outhern Tibet and their implication for the India-Eurasia collision[J]. Lethai a,35(2): 131-146.
[30]  邓万明. 1998. 青藏高原北部新生代板内火山岩[M]. 北京:地质出版社. 180页.
[31]  丁 林,张进江,周 勇, 邓万明,许荣华,钟大赉. 1999. 青藏高原岩石圈演化的记录:藏北 超钾质及钠质火山岩的岩石学与地球化学特征[J]. 岩石学报,15(3):408-421.
[32]  丁 林,岳雅慧,蔡福龙,徐晓霞,张清海,来庆洲. 2006. 西藏拉萨地块高镁超钾质火山岩及 对南北向裂谷形成时间和切割深度的制约[J]. 地质学报,80(9):1252-1261.
[33]  何学贤,朱祥坤,杨 淳,唐索寒. 2005. 多接收器等离子体质谱(MC-ICP-MS)Pb同位素高精 度研究[J]. 地球学报,26(05):19-22.
[34]  何学贤,唐索寒,朱祥坤,王进辉. 2007. 多接收器等离子体质谱(MC-ICPMS)高精度测定Nd 同位素方法[J].地球学报,28(4):405-410.
[35]  侯增谦,孟祥金,曲晓明,高永丰. 2005. 西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相 变及深部过程约束[J]. 矿床地质,24(2):108-121.
[36]  侯增谦,赵志丹,高永丰,杨志明,江 万. 2006. 印度大陆板片前缘撕裂与分段俯冲:来自冈 底斯新生代火山-岩浆作用的证据[J]. 岩石学报,22(4):761-774.
[37]  胡文洁. 2012. 青藏高原西南部碰撞后超钾质火山岩的锂同位素地球化学特征及其岩石成因 (硕士论文)[D]. 导师:侯增谦,田世洪. 江西:东华理工大学. 91页.
[38]  刘 栋,赵志丹,朱弟成,王 青,隋清霖,刘勇胜,胡兆初,莫宣学. 2011. 青藏高原拉萨地块 西 部雄巴盆地后碰撞钾质-超钾质火山岩年代学与地球化学[J]. 岩石学报,27(7):2045-2059 .
[39]  罗照华,莫宣学,侯增谦,邓万明,王江海,赵志丹,喻学惠,李建平. 2006. 青藏高原新生代形 成演化的整合模型-来自火成岩的约束[J]. 地学前缘,13(4):196-211.
[40]  莫宣学,赵志丹,邓晋福,董国臣,周 肃,郭铁鹰,张双全,王亮亮. 2003. 印度-亚洲大陆主碰 撞过程的火山作用响应[J]. 地学前缘,10(3):135-148.
[41]  莫宣学,董国臣,赵志丹,周 肃,王亮亮,邱瑞照,张凤琴. 2005. 西藏冈底斯带花岗岩的时空 分布特征及地壳生长演化信息[J]. 高校地质学报,11(3):281-290.
[42]  莫宣学,赵志丹,DePaolo D J,周 肃,董国臣. 2006a. 青藏高原拉萨地块碰撞-后碰撞岩浆 作 用的三种类型及其对大陆俯冲和成矿作用的启示:Sr-Nd同位素证据[J]. 岩石学报,22(4): 795-803.
[43]  莫宣学,潘桂堂. 2006b. 从特提斯到青藏高原形成:构造-岩浆事件的约束[J]. 地学前缘, 13(6):43-51.
[44]  莫宣学,赵志丹,邓晋福,喻学惠,罗照华,董国臣. 2007a. 青藏新生代钾质火山活动的时空迁 移及向东部玄武岩省的过渡: 壳幔深部物质流的暗示[J]. 现代地质,21(2):255-264.
[45]  莫宣学,赵志丹,周 肃,董国臣,廖忠礼. 2007b. 印度-亚洲大陆碰撞的时限[J]. 地质通 报,26(10):1240-1244.
[46]  苏嫒娜,田世洪,李真真,侯增谦,侯可军,胡文洁,高延光,杨 丹,李延河,杨竹森. 2011. MC-ICP-MS高精度测定Li同位素分析方法[J]. 地学前缘,18(2):304-314.
[47]  孙晨光,赵志丹,莫宣学,朱弟成,董国臣,周 肃,董 昕,谢国刚. 2007. 青藏高原拉萨地块 西部中新世赛利普超钾质岩石的地球化学与岩石成因[J]. 岩石学报,23(11):2715-2726.
[48]  孙晨光,赵志丹,莫宣学,朱弟成,董国臣,周 肃,陈海红,谢烈文,杨岳衡,孙金凤,于 枫. 20 08. 青藏高原西南部赛利普超钾质火山岩富集地幔源区和岩石成因:锆石U-Pb年代学和Hf同 位素制约[J]. 岩石学报,24(2):249-264.
[49]  更多...
[50]  田世洪,苏嫒娜,李真真,侯增谦,侯可军,胡文洁,杨 丹,李延河,杨竹森. 2011. 多接收器电 感耦合等离子体质谱仪(MC-ICPMS)测定Li同位素分析方法[A]. 李延河编著.同位素分析 和定年新方法[C].北京:地质出版社. 69-80.
[51]  王保弟,许继峰,张兴国,陈建林,唐志强,董彦辉. 2008. 青藏高原西部赛利普中新世火山岩 源区:地球化学及Sr-Nd同位素制约[J]. 岩石学报,24(2):265-278.
[52]  Arnund N O,Vidal P H,Tapponnier P,Matte P H and Deng W M. 1992. The high K 2O volcanism of northwestern Tibet: Geochemistry and tectonic implications[J]. Earth Planetary Science Letters,111:351-367.
[53]  Aulbach S,Rudnick R L and McDonough W F. 2008. Li-Sr-Nd isotope signatures of th e plume and cratonic lithospheric mantle beneath the margin of the rifted Tanzan ian craton (Labait)[J]. Contrib. Mine-ral. Petrol.,155:79-92.
[54]  Aulbach S and Rudnick R L. 2009. Origins of non-equilibrium lithium isotopic fra ctionation in xenolithic peridotite minerals:Examples from Tanzania[J]. Chem. Geol.,258: 17-27.
[55]  Beghoul N,Barazangi M and Isacks B L. 1993. Lithospheric structure of Tibet and Western North America: Mechanisms of uplift and a comparative study[J]. Journa l of Geophysical Research,98:1997-2016.
[56]  Bell D R,Hervig R L,Buseck P R and Aulbach S. 2009. Lithium isotope analysis of olivine by SIMS: Calibration of a matrix effect and application to magmatic phen ocrysts[J]. Chem. Geol.,258:5-16.
[57]  Blisniuk P M,Hacker B,Glodny J,Ratschbacher L,Bill S,Wu Z H,McWilliams M O and C alvert A. 2001. Normal faulting in central Tibet since at least 13.5 Myr ago[J]. Nature,412:628-632.
[58]  Bottomley D J,Katz A,Chan L H,Starinsky A,Douglas M,Clark I D and Raven K G. 199 9. The origin and evolution of Canadian Shield brines:Evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton[J]. Chem. Geol.,155:295-320.
[59]  Brenan J M,Neroda E,Lundstrom C C,Shaw H F,Ryerson F J and Phinney D L. 1998a. B ehaviour of boron, beryllium and lithium during melting and crystallization:Cons traints from mineral-melt partitioning experiments[J]. Geochim. Cosmochim. Act a,62:2129-2141.
[60]  Brenan J M,Ryerson F J and Shaw H F. 1998b. The role of aqueous fluids in the sl ab-to-mantle transfer of boron, beryllium and lithium during subduction: Experim ents and models[J]. Geochim. Cosmochim. Acta,62:3337-3347.
[61]  Chan L H,Edmond J M,Thompson G and Gillis K. 1992. Lithium isotopic composition of submarine basalts:Implications for the lithium cycle in the oceans[J]. Eart h and Planetary Science Letters,108:151-160.
[62]  Chan L H,Leeman W P and You C F. 1999. Lithium isotopic composition of central A merican volcanic arc lavas:Implications for modification of subarc mantle by sla b-derived fluids[J]. Chem. Geol.,160:255-280.
[63]  Chan L H,Starinsky A and Katz A. 2002a. The behavior of lithium and its isotopes in oilfield brines:Evidence from the Heletz-Kokhav field, Israel[J]. Geochimi ca et Cosmochimica Acta,66:615-623.
[64]  Chan L H,Alt J C and Teagle D A H. 2002b. Lithium and lithium isotope profiles t hrough the upper oceanic crust:A study of seawater-basalt exchange at ODP Sites 504B and 896A[J]. Earth and Planetary Science Letters,201:187-201.
[65]  Chan H L,Lassiter J C,Hauri E H,Hart S R and Blusztajn J. 2009. Lithium isotope systematics of lavas from the Cook-Austral Islands: Constraints on the origin of HIMU mantle [J]. Earth and Planetary Science Letters,277:433-442.
[66]  Chung S L,Lo C H,Lee T Y,Zhang Y,Xie Y,Li X,Wang K L and Wang P L. 1998. Diachro nous uplift of the Tibetan Plateau starting 40 Myr ago[J]. Nature,394:769-773.
[67]  Chung S L,Liu D Y,Ji J Q,Chu M F,Lee H Y,Wen D J,Lo C H,Lee T Y,Qian Q and Zhang Q. 2003. Adakites from continental collision zones:Melting of thickened lower c rust beneath southern Tibet[J]. Geology,31:1021-1024.
[68]  Chung S L,Chu M F,Zhang Y,Xie Y,Lo C H,Lee T Y,Lan C Y,Li X,Zhang Q and Wang Y. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations i n post-collisional magmatism[J]. Earth Science Reviews, 68:173-196.
[69]  Copeland P,Harrison T M,Kidd W S F,Xu R H and Zhang Y Q. 1987. Rapid early Mioce ne acceleration of uplift in the Gangdese Belt, Xizang(southern Tibet), and its bearing on accommodation mechanisms of the India-Asia collision[J]. Earth and Planetary Science Letters,86:240-252.
[70]  Coulon C,Maluski H,Bollinger C and Wang S. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, pet rological characteri stics and geodynamical significance[J]. Earth and Planetary Science Letters,79 :281-302.
[71]  Dilek Y and Moores E M. 1999. A Tibetan model for the Early Tertiary western Uni ted States[J]. Journal of the Geological Society of London,156:929-942. doi:10 .1144/gsjgs.156.5.0929.
[72]  Ding L,Kapp P,Zhong D and Deng W. 2003. Cenozoic volcanism in Tibet:Evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 44:1833-1865.
[73]  Ding L,Kapp P and Wan X. 2005. Paleocene-Eocene record of ophiolite obduction an d initial India-Asian collision, south central Tibet[J]. Tectonics,24: 1-18.
[74]  England P C and Houseman G. 1988. The mechanics of the Tibetan plateau[A]. Lon don: Philosophical Transactions of the Royal Society. 301-319.
[75]  Foley S F,Venturelli G,Green D H and Toscani L. 1987. The ultrapotassic rocks: C haracteristics, classification and constraints for petrogenetic models[J]. Ear th Science Review,24:8l-134.
[76]  Gao Y,Hou Z,Kamber B S,Wei R,Meng X and Zhao R. 2007. Lamproitic rocks from a co ntinental collision zone:Evidence for recycling of subducted Tethyan oceanic sed iments in the mantle beneath Southern Tibet[J]. Journal of Petrology,48:729-75 2.
[77]  Guo Z,Wilson M,Liu J and Mao Q. 2006. Post-collisional,potassic and ultrapotassi c magmatism of the Northern Tibetan Plateau:Constraints on characteristics of th e mantle source,geodynamic setting and uplift mechanisms[J]. Journal of Petrol ogy, 47:1177-1220.
[78]  Halama R,McDonough W F,Rudnick R L,Ionov D A,Keller J and Klaudius J. 2007. The Li isotopic composition of Oldoinyo Lengai:Nature of the mantle sources and lack of isotopic fractionation during carbonatite petrogenesis[J]. Earth and Plane tary Science Letters,254:77-89.
[79]  Halama R,McDonough W F,Rudnick R L and Bell K. 2008. Tracking the lithium isotop ic evolution of the mantle using carbonatites[J]. Earth and Planetary Science Letters,265:726-742.
[80]  Halama R,John T,Herms P,Hauff F and Schenk. 2011. A stable(Li, O) and radiogenic (Sr, Nd) isotope perspective on metasomatic processes in a subducting slab[J] . Chem. Geol.,281(3/4):151-166.
[81]  Hamelin C,Seitz H M,Barrat J A,Dosso L,Maury R C and Chaussidon M. 2009. A low δ7Li lower crustal component: Evidence from an alkalic intraplate volcanic se ries(Chane des Puys, French Massif Central)[J]. Chem. Geol., 266:205-217.
[82]  Harrison T M,Copeland P,Kidd W S F and Yin A. 1992. Raising Tibet[J]. Science, 255:1663-1670.
[83]  Hou Z Q,Gao Y F,Qu X M,Rui Z Y and Mo X X. 2004. Origin of adakitic intrusives g enerated during mid-Miocene east-west extension in southern Tibet[J]. Earth an d Planetary Science Letters,220:139-155.
[84]  Huh Y S,Chan L H,Zhang L B and Edmond J M. 1998. Lithium and its isotopes in maj or world rivers: Implications for weathing and the oceanic budget[J]. Geochimi ca et Cosmochimica Acta, 62: 2039-2051.
[85]  Huh Y S,Chan L H and Edmond J M. 2001. Lithium isotopes as a probe of weathering processes: Orinoco River[J]. Earth and Planetary Science Letters,194:189-199.
[86]  Irvine T N and Baragar W R A. 1971. A guide to the chemical classification of th e common volcanic rocks[J]. Canadian Journal of Earth Science,8:523-548.
[87]  Ishikawa T and Nakamura E. 1994. Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes[J]. Nature,370:205-208.
[88]  Janouek V and Holub F V. 2007. The causal link between HP-HT metamorphism and u ltrapotassic magmatism in collisional orogens:Study from the Moldanubian zone of the Bohemian Massif[A]. Proceedings of the Geologists Association,118:75-86.
[89]  Janouek V,Magna T,Holub F V,Oberli F and Wiechert U. 2009. On the origin of Li isotope signatures in magmatic rocks from the Central Bohemian Plutonic Complex [A]. Geochimica et Cosmochimica Acta,73:A586.
[90]  Jeffcoate A B,Elliott T,Thomas A and Bouman C. 2004. Precise, small sample size determinations of lithium isotopic compositions of geological reference mate rial s and modern seawater by MC-ICPMS[J]. Geostandards and Geoanalytical Research, 28161-172.
[91]  Kisakürek B,Widdowson M and James R H. 2004. Behavior of Li isotopes during con tinental weathering: The Bidar laterite profile[J]. India Chem. Geol.,212:27-4 4.
[92]  Kisakürek B,James R H and Harris N B W. 2005. Li and δ7Li in Himalayan river s: Proxies for silicate weathering [J]. Earth and Planetary Science Letters,237:3 87-401.
[93]  Kloppmann W,Chikurel H,Picot G,Guttman J,Pettenati M,Aharoni A,Guerrot C,Millot R,Gaus I and Wintgens T. 2009. B and Li isotopes as intrinsic tracers for inject ion tests in aquifer storage and recovery systems[J]. Applied Geochemistry,24: 1214-1223.
[94]  Kobayashi K,Tanaka R,Moriguti T,Shimizu K and Nakamura E. 2004. Lithium, boron, and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas :Evidence for recycled components in the Hawaiian plume[J]. Chem. Geol.,212(1/ 2):143-161.
[95]  Kohn M J and Parkinson C D. 2002. Petrologic case for Eocene slab breakoff durin g the Indo-Asian collision[J]. Geology,30:591-594.
[96]  Kohút M,Magna T,Janouek V,Oberli F and Wiechert U. 2009. Fingerprinting sourc e s of gtiming of east-west extension and its re lationship to postcollisional volcanism[J] Geology, 29: 33-342.
[97]  Williams H M,Turner S P,Pearce J A,Kelley S P and Harris N B W. 2004. Nature of the source regions for post-collisional, potassic magmatism in southern and nort hern Tibet from geochemical variations and inverse trace element modeling[J]. Journal of Petrology,45:555-607.
[98]  Wimpenny J,James R H Burton K W,Gannoun A,Mokadem F and Gíslason S. 2010. Glaci al effects on weathering processes:New insights from the elemental and lithium i sotopic composition of West Greenland rivers[J]. Earth and Planetary Science L etters,290:427-437.
[99]  Wunder B,Meixner A,Romer R L and Heinrich W. 2006. Temperature-dependent isotopi c fractionation of lithium between clinopyroxene and high-pressure hydrous fluids[J]. Contrib. Mineral. Petrol.,151:112-120.
[100]  Yin A and Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen y[J]. Annu. Rev. Earth and Planetary Science Letters,28:211-280.
[101]  Zack T,Tomascak P B,Rudnick R L,Dalpé C and McDonough W F. 2003. Extremely ligh t Li in orogenic eclogites:The role of isotope fractionation during dehydration in subducted oceanic crust[J]. Earth and Planetary Science Letters,208:279-290 .
[102]  Zhang H F,Deloule E,Tang Y J and Ying J F. 2010. Melt/rock interaction in remin s of refertilized Archean lithospheric mantle in Jiaodong Peninsula, North China Craton: Li isotopic evidence[J]. Contrib. Mineral. Petrol., doi: 10.1007/s004 10-00009-00476-00414.
[103]  Zhao Z D,Mo X X,Dilek Y,Niu Y L,DePaolo D J,Robinson P,Zhu D C,Sun C G,Dong G C, Zhou S,Luo Z H and Hou Z Q. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositio ns of the post-collisional ultrapotassic magmatism in SW Tibet:Petrogenesis and implications for India intra-continental subduction beneath southern Tibet[J]. Lithos,113:190-212.
[104]  Zhou H W and Murphy M A. 2005. Tomographic evidence for wholesale underthrusting of India beneath the entire Tibetan plateau[J]. Journal of Asian Earth Scienc e,25:445-457. and Kasztovszky Z. 2009. Lithium, boron and c hlorine as tracers for metasomatism in high-pressure metamorphic rocks:A case st udy from Syros (Greece)[J]. Mineral. Petrol.,95:291-302.
[105]  Maureen F,Sarah P D,Franck P and Stefan W. 2009. Applications of non-traditional stable isotopes in high-temperature geochemistry[J]. Chem. Geol.,258:1-4.
[106]  Miller C,Schuster R,Klotzli U,Frank W and Grasemann B. 1999. Post-collisional po tassic and ultrapotassic magmatism jn SW Tibet:Geochemical and Sr-Nd-Pb-O isotop ic constraints for mantle source characteristics and petrogenesis[J]. Journal of Petrology,40(9):l399-l424.
[107]  Millot R,Scaillet B and Sanjuan B. 2010. Lithium isotopes in island arc geotherm al systems:Guadeloupe, Martinique (French West Indies) and experimental approach [J]. Geochimica et Cosmochimica Acta,74:1852-1871.
[108]  Mo X X,Zhao Z D,Zhou S,Dong G C,Guo T Y and Wang L. 2002. Evidence for timing of the initiation of India-Asia collision from igneous rocks in Tibet[A]. EOS Tr ans. AGU,83(47), F1003, Fall Meeting.Abstract, S62B-1201.
[109]  Mo X,Zhao Z,Deng J,Flower M,Yu X,Luo Z,Li Y,Zhou S,Dong G,Zhu D and Wang L. 2006 . Petrology and geochemistry of postcollisional volcanic rocks from the Tibetan plateau: Implications for lithosphere heterogeneity and collision-induced asthen ospheric mantle flow[A]. In:Dilek Y and Pavlides S,eds. Post-collisional tecto ni cs and magmatism in the Mediterranean region and Asia[C]. Geological Society o f America Special Paper,409:507-530.
[110]  Molnar P and Tapponnier P. 1978. Active tectonics of Tibet[J]. Journal of Geop hysical Research,85:5361-5375.
[111]  Moriguti T and Nakamura E. 1998. Across-arc variation of Li isotopes in lavas an d implications for crust/mantle recycling at subduction zones[J]. Earth and Pl anetary Science Letters, 163(1/ 4):167-174.
[112]  Nomade S,Renne P R,Mo X X,Zhao Z D and Zhou S. 2004. Miocene volcanism in the Lh asa block, Tibet: Spatial trends and geodynamic implications[J]. Earth Planeta ry Science Letters,221:227-243.
[113]  Owens T J and Zandt G. 1997. Implications of crustal property variations for mod els of Tibetan plateau evolution[J]. Nature,387:37-43.
[114]  Penniston-Dorland S C, Sorensen S S, Ash R D and Khadke S V. 2010. Lithium isoto pes as tracer of fluids in a subduction zone mélange:Franciscan Complex, CA[J]. Earth Planetary Science Letters,292:181-190.
[115]  Plank T and Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chem. Geol.,145:325-394.
[116]  Pogge von Strandmann P A E,James R H,Calsteren P,Gíslason S R and Burton K W. 2 008. Lithium, magnesium and uranium isotope behaviour in the estuarine environme nt of basaltic islands[J]. Earth and Planetary Science Letters,274(3-4):462-47 1.
[117]  Pogge von Strandmann P A E,Burton K W,James R H,Calsteren P and Gíslason S R. 2 010. Assessing the role of climate on uranium and lithium isotope behaviour in r ivers draining a basaltic terrain[J]. Chem. Geol.,270: 227-239.
[118]  Qiu L,Rudnick R L,McDonough W F and Merriman R J. 2009. Li and 7Li in mudr ocks f rom the British Caledonides:Metamorphism and source influences[J]. Geochimica et Cosmochimica Acta,73:7325-7340.
[119]  Richwood P C. 1989. Boundary lines within petrologic diagrams which use oxides o f major and minor elements[J]. Lithos,22: 247-263.
[120]  Rudnick R L,Tomasack P B,Njo H B and Gardner L R. 2004. Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South C arolina[J]. Chem. Geol.,212:45-57.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133