全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2012 

大陆碰撞成矿作用:I.冈底斯新生代斑岩成矿系统

Keywords: 地质学,斑岩矿床,围岩建造,深部过程,成矿作用,大陆碰撞造山,青藏高原

Full-Text   Cite this paper   Add to My Lib

Abstract:

火山岩浆弧和大陆碰撞带是产出巨型斑岩矿床的两类重要环境。岩浆弧环境的斑岩铜矿成矿理论业已建立,而大陆碰撞环境的斑岩矿床则研究薄弱。在青藏高原,印度-亚洲大陆碰撞导致了大规模斑岩成矿作用,在主碰撞期(65~41Ma)发育沙让式斑岩Mo矿和亚贵拉式斑岩-矽卡岩型Pb-Zn-Mo矿床,在晚碰撞期(40~26Ma)形成明则式斑岩Mo矿和努日式斑岩-矽卡岩型Mo-W-Cu矿床,在后碰撞期(25~13Ma)产生驱龙式斑岩Cu-Mo矿床。这些矿床构成了3条规模不等的成矿带,分别发育在冈底斯的北带(中拉萨地体)、南带(泽当弧地体)和中带(南拉萨地体)。冈底斯含矿斑岩系统通常为多期多相浅成侵入杂岩体。含矿斑岩以高K为特征,多为高K钙碱性岩和钾玄岩系列。含Cu斑岩以二长花岗斑岩为主,显示埃达克岩地球化学亲和性,含Mo斑岩以花岗斑岩为主,显示大陆壳成因特点。微量元素和Sr-Nd-Hf同位素地球化学研究表明,含Cu斑岩来自碰撞加厚的西藏镁铁质的新生下地壳(如角闪榴辉岩),早期卷入新生下地壳的幔源物质及硫化物的重熔为斑岩岩浆提供了部分金属Cu、Au和S;含Mo岩浆来自古老的西藏镁铁质下地壳(如角闪岩)的部分熔融,金属Mo主要来自古老地壳物质的贡献。冈底斯含矿斑岩均含有不同成分的微粒镁铁质包体(MME),并显示典型的长英质与镁铁质岩浆混合特征。以MME为代表的含Cu富H2O幔源岩浆,或底侵于冈底斯地壳底部,为下地壳熔融提供了热和H2O,或注入长英质岩浆房,为斑岩系统提供了部分金属Cu和S,并提升了岩浆氧逸度。冈底斯斑岩岩浆-热液-成矿系统受控于斑岩就位的地壳环境。在斑岩体侵位的花岗岩基环境,其良好的封闭性导致热液流体(岩浆出溶)以斑岩岩株为核心向外扩散,形成环状蚀变分带,并主要在钾硅酸盐化带发生Cu-Mo矿化;在碎屑岩-碳酸盐建造环境,碳酸盐建造发生矽卡岩化和金属淀积,不透水的细碎屑岩层阻挡热液流体扩散,热液矿化围绕斑岩体发育,形成斑岩型Mo-矽卡岩型Pb-Zn-Mo或Mo-W-Cu成矿系统;在层火山-沉积环境,良好的封闭盖层导致岩浆流体与天水强烈混合以及混合流体的长距离侧向流动,发育大面积蚀变岩盖,形成上部浅成低温热液Au-Cu和下部斑岩型Cu-Mo成矿系统。结合区域构造-岩浆分析,笔者认为,发育于冈底斯碰撞带3个不同碰撞期的幔源岩浆上侵-下地壳部分熔融-岩浆浅成侵位-斑岩成矿系统,受控于印度-亚洲大陆三阶段碰撞的不同深部过程,据此提出了大陆碰撞过程中斑岩型矿床的地球动力学模型。

References

[1]  陈金标,方树元,陈银来. 2010. 西藏东冈底斯山南矿集区成矿地质特征及找矿前 景展望[A]. 经济发展方式转变与自主创新——第十二届中国科学技术协会年会(第一卷 )[C]. 1-8.
[2]  陈 雷,秦克章,李光明,肖 波,李金祥,江化寨,陈金标,赵俊兴,范 新,韩逢杰, 黄树峰,琚宜太. 2011. 西藏山南努日铜钼钨矿床矽卡岩地球化学特征及成因[J]. 地质 与勘探,47(1): 78-88.
[3]  陈玉水,王成东,杜庆安. 2011. 西藏山南明则矿区斑岩型钼矿地质特征及外围找矿预测[J]. 地质与勘探,47(1): 31-35.
[4]  程顺波,庞迎春,曹 亮. 2008. 西藏蒙亚阿矽卡岩铅锌矿床的成因探讨[J]. 华南地质 与矿产,3: 50-56.
[5]  董国臣,莫宣学,赵志丹,王亮亮,周 肃. 2005. 拉萨北部林周盆地林子宗火山岩层序新 议[J]. 地质通报,24: 549-557.
[6]  杜 欣,刘俊涛,王亚平. 2004. 西藏拉屋铜铅锌多金属矿床地质特征及成因研究[J]. 矿产与地质,18(5): 410-449.
[7]  侯增谦,潘小菲,杨志明,曲晓明. 2007. 初论大陆环境斑岩铜矿[J]. 现代地质, 21(2) : 332-351.
[8]  侯增谦,杨志明. 2009. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概 念模型[J]. 地质学报,83(12): 1779-1817.
[9]  侯增谦. 2010. 大陆碰撞成矿论[J]. 地质学报,84(1): 30-58.
[10]  更多...
[11]  黄克贤,郑远川,张 松,李 为,孙清钟,李秋耘,付 强,梁 维,侯增谦. 2012. 西 藏亚贵拉矿区两期不同含矿岩体LA-ICP-MS锆石U-Pb定年及地质意义[J]. 岩石矿物学杂志 ,31(1): 348-360.
[12]  黄树峰,江善元,江化寨,陈玉水. 2011. 西藏山南铜多金属成矿系统及走滑转换构造应力 场分析[J]. 地质与勘探,47(1): 1-10.
[13]  江化寨,曾海良,吴志山. 2011. 西藏山南努日矿区层矽卡岩型铜钨钼矿床地质特征及深部 找矿预测[J]. 地质与勘探,47(1): 71-77.
[14]  江 万,莫宣学,赵崇贺,郭铁鹰,张双全. 1999. 青藏高原冈底斯带中段花岗岩类及其中 铁镁质微粒包体地球化学特征[J]. 岩石学报,15(1): 89-97.
[15]  Wallace P and Gerlach T M. 1994. Mgamtic vapor source for sulfur dioxide release d during volcanic eruptions: Evidence from Mount Pinatubo[J]. Science, 265: 49 7-499.
[16]  Wang Q, Xu J F, Jian P, Bao Z W, Zhao Z H, Li C F, Xiong X L and Ma J L. 2006. Petrogenesis of adakitic porphyries in an extentional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 47: 119-144.
[17]  Winchester J A and Floyd P A. 1977. Geochemical discrimination of different magm a series and their differentiation products using immobile elements[J]. Chemic al Geology, 20: 325-343.
[18]  Wolf M B and Wyllie P J. 1991. Dehydration-melting of solid amphibolite at 10 kb ar: Exttural development, liquid interconnectivity and application to the segreg ation of magmas[J]. Contribution to Mineralogy and Petrology, 44: 151-179.
[19]  Xiao B, Qin K Z, Li G M, Li Ji X, Xia D X, Chen L and Zhao J X. 2012. Highly oxi deized magma and fluid evolution of Miocene Qulong giant porphyry Cu-Mo deposit, southern Tibet, China[J]. Resource Geology, 62: 4-18.
[20]  Xiong X L. 2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite[J]. Geology, 34: 945-948.
[21]  Xu W C, Zhang H F, Guo L and Yuan H L.2010. Miocene high Sr/Y magmatism, south T ibet: Product of partial melting of subducted Indian continental crust and its tectonic implication[J]. Lithos, 114: 293-306.
[22]  Yang Z M., Hou Z Q, White N C, Chang Z S, Li Z Q and Song Y C. 2009. Geology of the post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet[J]. O re Geology Reviews, 36:133-159.
[23]  Yin A and Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen [J]. Journal of Annual Reviews in Earth and Panletary Science Letters, 28: 211 -280.
[24]  Yin A, Harrison T M and Ryerson F J. 1994. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet[J]. Journal of Geophyscial Reseach, 99: 175-201.
[25]  Zeng L S, Gao L E, Xie K J and Zeng J L. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss dome: Melting thickened lower continental crust[J]. Earth and Panletary Science Letters, 303: 251-266.
[26]  Zhao J X, Qin K Z, Li G M, Li J X, Xiao B and Chen L. 2012. Geochemistry and pet rogenesis of granitoids at Sharang Eocene porphyry Mo deposit in the main-stage of India-Asia continental collision, Northern Gangdese, Tibet[J]. Resource Geo logy, 62: 84-98.
[27]  Zhao Z D, Mo X X, Dilek Y, Niu Y L, DePaolo D J, Robinson P, Zhu D C, Sun C G, D ong G C, Zhou S, Luo Z H and Hou Z Q. 2009. Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrog enesis and implications for India intra-continental subduction beneath southern Tibet[J]. Lithos, 113: 190-212.
[28]  Zheng Y C, Hou Z Q, Li Q Y, Sun Q Z, Liang W, Fu Q, Li W and Huang K X. 2012a. Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane: evi dence from in situ zircon U-Pb dating, Hf-Oisotopes, and whole-rock geochemistr y[J]. Lithos, http://dx.doi.org/10.1016/j.lithos.2012.05.026.
[29]  Zheng Y C, Hou Z Q ,Li W, Liang W, Huang K X, Li Q Y, Sun Q Z, Fu Q , Zhang Sand Pan F C. 2012b. Petrogenesis and geological implications of the Oilgocene Chong muda-Mingze adakitic intrusions and its mafic enclaves, southern Tibet[J]. The Journal of Geology (in press).
[30]  Zhu D C, Mo X X, Niu Y L, Zhao Z D, Wang L Q, Liu Y S and Wu F Y. 2009. Geochemi cal investigation of early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 268: 298-312 .
[31]  Zhu D C, Zhao Z D, Niu Y L, Mo X X, Chung S L, Hou Z Q, Wang L Q and Wu F Y. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 301: 241-255. ical results[J]. Ore Geology Reviews, 31: 205-223.
[32]  Rapp R P and Watson E B. 1995. Dehydration melting of metabasalts at 8-32 kbar: Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 36: 891-931.
[33]  Rapp P R, Xiao L and Shimizu N. 2002. Experimental constraints on the origin of potassium-rich adakite in east China[J]. Acta Petrologica Sinica, 18: 293-311.
[34]  Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Econ. Geol., 98: 1515-1533.
[35]  Richards J P. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Pr oducts of remelting of subduction-modified lithosphere[J]. Geology, 37: 247-25 0.
[36]  杜 欣,燕长海,陈俊魁,高 明,李新发. 2010. 西藏亚贵拉铅锌多金属矿床的地质特征 [J]. 地质调查与研究,33(4): 257-265.
[37]  范 新,陈 雷,秦克章,肖 波,李金祥,李秋平,陈玉水,陈金标,赵俊兴,李光明, 黄树峰,琚宜太. 2011. 西藏山南地区明则斑岩钼矿床蚀变矿化特征与成矿时代[J]. 地 质与勘探,47(1): 89-99.
[38]  高一鸣,陈毓川,唐菊兴,杜 欣,李新法,高 明,蔡志超. 2009. 西藏工布江达县亚贵 拉铅锌、钼多金属矿床石英斑岩锆石SHRIMP定年及其地质意义[J]. 地质学报,83(10): 1 436-1444.
[39]  高一鸣,陈毓川,王成辉,侯可军. 2011. 亚贵拉-沙让-洞中拉矿集区中新生代岩浆岩Hf同 位素特征与岩浆源区示踪[J]. 矿床地质,30 (2): 279-291.
[40]  高永丰,侯增谦,魏瑞华. 2003. 冈底斯晚第三纪地球动力学意义[J]. 岩石学报,19(3) : 418-428.
[41]  侯增谦,曲晓明,黄 卫,高永丰. 2001. 冈底斯斑岩铜矿成矿带有望成为西藏第二条"玉 龙"铜矿带[J]. 中国地质,28(10): 27-29.
[42]  侯增谦,吕庆田,王建安,李晓波,王宗起,王二七. 2003. 初论陆-陆碰撞与成矿作用[J]. 矿床地质, 22(4): 319-333.
[43]  侯增谦,高永丰,曲晓明,黄 卫. 2004. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成 因与构造控制[J]. 岩石学报,20(2): 1-10.
[44]  侯增谦,杨竹森,徐文艺,莫宣学,丁林,高永丰,董方浏,李光明,曲晓明,赵志丹, 江思宏,孟祥金,李振清,秦克章,杨志明. 2006a. 青藏高原碰撞造山带: Ⅰ. 主碰撞造 山成矿作用[J]. 矿床地质,25(4): 337-358.
[45]  侯增谦,潘桂棠,王安建,莫宣学,田世洪,孙晓明,丁林,王二七,高永丰,谢玉玲, 曾普胜,秦克章,许继峰,曲晓明,杨志明,杨竹森,费红彩,孟祥金,李振清. 2006b. 青藏高原碰撞造山带: Ⅱ.晚碰撞转换成矿作用[J]. 矿床地质,25(5): 521-543.
[46]  侯增谦,曲晓明,杨竹森,孟祥金,李振清,杨志明,郑绵平,郑有业,聂凤军,高永丰, 江思宏,李光明. 2006c. 青藏高原碰撞造山带: Ⅲ.后碰撞伸展成矿作用[J]. 矿床地质 ,25(6): 629-651.
[47]  李 才,和钟铧,李惠民. 2003. 青藏高原南羌塘基性岩墙群U-Pb和Sm-Nd同位素定年及构 造意义[J].中国地质,31(4): 384-389.
[48]  李光明,芮宗瑶. 2004. 西藏冈底斯成矿带斑岩铜矿的成岩年龄[J]. 大地构造与成矿学 ,28(2): 165-170.
[49]  李光明,刘 波,佘宏全,丰成友,屈文俊. 2006a. 西藏冈底斯成矿带南缘喜马拉雅早期 成矿作用: 来自冲木达铜金矿床的Re-Os同位素年龄证据[J]. 地质通报, 25(12): 1481-1486.
[50]  李光明,秦克章,丁奎首,李金祥,王少怀,江善元,林金灯,江化寨,方树元,张兴春. 2006b. 冈底斯东段南部第三纪矽卡岩型Cu-Au-Mo矿床地质特征、矿物组合及其深部找矿意 义[J]. 地质学报,80(9): 1407-1421.
[51]  李光明,段志明,刘 波,张 晖,董随亮,张 丽. 2011. 西藏班公湖-怒江结合带北缘 多龙地区侏罗纪增生杂岩的特征及意义[J]. 地质通报,30(8): 1256-1260.
[52]  连永牢,曹新志,燕长海,杜 欣,高 明,罗 雪. 2009. 西藏工布江达县亚贵拉铅锌矿 床地质特征及成因分析[J]. 地质与勘探,45(5): 570-576.
[53]  梁华英,魏启荣,许继峰,胡光黔,Charllote Allen. 2010. 西藏冈底斯矿带南缘矽卡岩 型铜矿床含矿岩体锆石U-Pb年龄及意义[J]. 岩石学报,26(5): 1692-1698.
[54]  罗茂澄,王立强,冷秋锋,陈 伟. 2011. 邦铺钼(铜)矿床二长花岗斑岩、黑云二长花岗岩 锆石Hf 同位素和Ce4+/Ce3+比值[J]. 矿床地质,30(2): 266-278.
[55]  孟祥金,侯增谦,高永丰,黄 卫,曲晓明,屈文俊. 2003. 西藏冈底斯东段斑岩铜钼铅锌 成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re-Os年龄证据[J]. 矿床地质,22(3): 24 6-252.
[56]  莫济海,梁华英,喻亨祥,陈勇,孙卫东. 2008. 西藏冲木达铜-金(钼)矿床黑云角闪二 长花岗岩锆石U-Pb年龄及其意义[J]. 地球化学,37(3): 206-212.
[57]  莫宣学,赵志丹,邓晋富,董国臣,周 肃,郭铁鹰,张双全,王亮亮. 2003. 印度-亚洲 大陆主碰撞过程的火山作用影响[J]. 地学前缘,10(3): 135-148.
[58]  潘桂棠,莫宣学,侯增谦,朱弟成,王立权,李光明,赵志丹,耿全如,廖忠礼. 2006. 冈 底斯造山带的时空结构及演化[J]. 岩石学报,22(03): 521-533.
[59]  秦克章,李光明,赵俊兴,李金祥,薛国强,严 刚,粟登奎,肖 波,陈 雷,范 新. 2008. 西藏首例独立钼矿-冈底斯沙让大型斑岩钼矿的发现及其意义[J]. 中国地质,35(6 ): 1101-1112.
[60]  曲晓明,侯增谦,黄 卫. 2001. 冈底斯斑岩铜矿(化)带:西藏第二条"玉龙"铜矿带[J]. 矿床地质,20(4): 355-366.
[61]  芮宗瑶,侯增谦,曲晓明,张立生,王龙生,刘玉琳. 2003. 冈底斯斑岩铜矿成矿时代及青 藏高原隆升[J]. 矿床地质,22(3): 217-224.
[62]  唐菊兴,陈毓川,王登红,王成辉,许远平,屈文俊,黄 卫,黄 勇. 2009. 西藏工布江 达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J]. 地质学报,83(5): 698-7 04.
[63]  唐菊兴,邓世林,郑文宝,应立娟,汪雄武,钟康惠,秦志鹏,丁 枫,黎枫佶,唐晓倩, 钟裕峰,彭慧娟. 2011. 西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J]. 矿床地质,30(2): 179-196.
[64]  王宝弟,许继峰,陈建林,张兴国,王立全,夏抱本. 2009. 冈底斯东段汤不拉斑岩Mo-Cu 矿床成矿时代与成因研究[J]. 岩石学报,26(6): 1820-1832.
[65]  闫学义,黄树峰,杜安道. 2010a. 冈底斯泽当大型钨铜钼矿Re-Os年龄及陆缘走滑转换成矿 作用[J]. 地质学报,84(3): 398-406.
[66]  闫学义,黄树峰. 2010b. 冈底斯东段泽当大型钨铜钼矿新发现及走滑型陆缘成矿新认识[J]. 地质论评,56(1): 9-19.
[67]  杨经绥,许志琴,张建新,张泽明,刘福来,吴才来. 2009. 中国主要高压-超高压变质带 的大地构造背景及俯冲/折返机制的探讨[J]. 岩石学报,25(7): 1529-1560.
[68]  杨志明,侯增谦,宋玉财,李振清,夏代详,潘凤雏. 2008a. 西藏驱龙超大型斑岩铜矿床: 地质、蚀变与成矿[J]. 矿床地质,27(3): 279-318.
[69]  杨志明,侯增谦,夏代详,宋玉财,李 政. 2008b. 西藏驱龙铜矿西部斑岩与成矿关系的 厘定:对矿床未来勘探方向的重要启示[J]. 矿床地质,27(1): 28-36.
[70]  杨志明,侯增谦. 2009. 西藏驱龙超大型斑岩铜矿的成因:流体包裹体及H-O同位素证据[J]. 地质学报,83(12): 1838-1858.
[71]  姚正煦,周伏洪,薛典军,刘振军,张永军. 2001. 雅鲁藏布江航磁异常带性质及其意义[J]. 物探与化探,25(4): 241-252.
[72]  姚正煦,周伏洪,薛典军,刘振军,张永军. 2002. 青藏高原中西部板块缝合带航磁特征[ J]. 物探与化探,26(3): 165-170.
[73]  岳雅慧,丁 林. 2006. 西藏林周基性岩脉的40Ar/39Ar年代学、地 球化学及其成因[J]. 岩石学报,22: 855-866.
[74]  张 松,郑远川,黄克贤,李 为,孙清钟,李秋耘,付 强,梁 维,侯增谦. 2012. 西 藏努日矽卡岩型铜钨钼矿辉钼矿Re-Os定年及其地质意义[J]. 矿床地质, 31(2): 337-34 6.
[75]  赵俊兴,秦克章,李光明,李金祥,严 刚,粟登奎,肖 波,陈 雷,范 新. 2009 . 冈 底斯沙让钼矿的成矿年代学和岩石地球化学与青藏高原主碰撞期成矿作用[J]. 矿物学报 ,增刊: 197-198.
[76]  赵俊兴,秦克章,李光明,李金祥. 2011. 冈底斯北缘沙让斑岩钼矿蚀变矿化特征及与典型 斑岩钼矿床的对比[J]. 地质与勘探,47(1): 54-70.
[77]  郑有业,高顺宝,程力军,李国梁,冯南平,樊子珲,张华平,郭建慈,张刚阳. 2004. 西 藏冲江大型斑岩铜(钼金)矿床的发现及意义[J]. 地球科学,29(3): 333-339.
[78]  Aitc hison J C, Zhu B D, Davis A M, Liu J, Luo H, Malpas J, McDeemind I, Wu H, Zi abrev S and Zhou M F. 2000. Remnants of a retaceous intra-oceanic subduction sys tem within the Yarlung-Zangbu suture (southern Tibet)[J]. Earth and Panletary Science Letters, 183: 231-244.
[79]  Atherton M P, Perford N. 1993. Generation of sodium-rich magmas from newly under plated basaltic crust[J]. Nature, 362: 144-146.
[80]  Blisniuk P M, Hacker B, Glodny J, Ratschbacher L, Bill S, Wu Z H, McWilliams M O and Calvert A. 2001. Normal faulting in central Tibet since at least 13.5 Myr a go[J]. Nature, 412: 628-632.
[81]  Bluth J S, Doiron S D, Schnetzler C C, Krueger A J and Water L S. 1992. Global t racking of the SO2 clouds from the June, 1991, Mount Pinatubo eruptions[J]. Geophysical Research Letters, 19: 151-154.
[82]  Burnham C W. 1979. Magma and hydrothermal fluids[A]. In: Barnes H L ed. Geoche mi stry of hydrothermal ore deposits[C]. 2nd ed. New York: John Wiley and Sons. 7 1-136.
[83]  Camus F, Sillitoe R H and Petersen R. 1996. Andean copper deposits: New discover ies, mineralization style and metallogeny[J]. Society of Economic Geologists S pecial Publication. 5: 1-198.
[84]  Candela P A. 1992. Controls on ore metal ratios in granite-related ore system: A n experimental and computational approach[J]. Transactions, Royal Society of E dinburgh (Earth Sciences), 83: 317-326.
[85]  Candela P A and Holland H D. 1984. The partitioning of copper and molybdenum bet ween silicate melts and aqueous fluids[J]. Geochimica et Cosmochimica Acta, 48 : 373-380.
[86]  Chu M F, Chung S L, Song B, Liu DY, O\'Reilly S Y and Pearson N J. 2006. Zircon U -Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution o f southern Tibet[J]. Geology, 34: 745-748.
[87]  Chung S L, Liu D Y, Ji J Q, Chu M F, Lee H Y, Wen D J, Lo C H, Lee T Y, Yian Q a nd Zhang Q. 2003. Adakites from continental collision zone: Melting of thicken l ower-crust beneath southern Tibet[J]. Geology, 31: 1021-1024.
[88]  Chung S L, Chu M F, Zhang Y Q, Xie Y Q, Lo C H, Lee T Y, Lan C Y, Li X H, Zhang Q and Wang Y Z. 2005. Tibetan tectonic evolution inferred from spatial and tempo ral variations in post-collisional magmatism[J]. Earth Science Reviews, 68: 17 3-196.
[89]  Chung S L, Chu M F, Ji J Q, O\'Reilly S Y, Pearson N J, Liu D Y, Lee T Y and Lo T H. 2009. The nature and timing of crustal thickening in southern Tibet: Geochem ical and zircon Hf isotopic constraints from postcollisional adakites[J]. Tect onphysics, 477: 36-49.
[90]  Cooke D R, Hollings P and Walshe J L. 2005. Giant porphyry deposits: Characteris tics, distribution, and tectonic controls[J]. Econ. Geol., 100: 801-818.
[91]  Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melti ng of young subducted lithosphere[J]. Nature, 347: 662-665.
[92]  Dilles J H and Proffett J M. 1995. Metallogenesis of the Yerington Batholith, Ne vada[A]. In: Pierce F W, Bolm J G, ed. Porphyry copper deposits of the America n Cordillera[C]. Arizona Geol. Soc. Digest, 20: 306-315.
[93]  Ding L, Kapp P, Zhong D L and Deng W M. 2003. Cenozoic volcanism in Tibet: Evide nce for a transition from oceanic to continental subduction[J]. Journal of Pet rology, 44: 1833-1865.
[94]  Dobosi G, Kempton P D, Downes H, Embey-Isztin A, Thirlwall M and Greenwood P. 20 03. Lower crust granulite xenolites from the Pannonian basin, Hungary, Part 2: S r, Nd, Pb, Hf and O isotope evidence for formation of continental lower crust by tectonic emplacement of oceanic crust[J]. Contributions to Mineralogy and Pet rology, 144: 671-683.
[95]  Durr S B. 1996. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, s outh Tibet) [J]. Geological Society of America Bulletin, 108: 669-684.
[96]  Gao Y F, Hou Z Q, Kamber B S, Wei R H, Meng X J and Zhao R S. 2007. Adakite-like porphyries from the southern Tibetan continental collision zone: evidence from slab melt metamomatism[J]. Contributions to Mineralogy and Petrology, 153: 105 -120.
[97]  Gao Y F, Wei R H, Hou Z Q, Tian S H and Zhao R S. 2008. Eocene high-MgO volcanis m in southern Tibet: New constraints for mantle source characteristics and deep process[J]. Lithos, 105: 63-72.
[98]  Gao Y F, Yang Z S, Santosh M, Hou Z Q, Wei R H and Tian S H. 2010. Adakitic rock s from slab melt-modified mantle sources in the continental collision zone of so uthern Tibet[J]. Lithos, 119: 651-663.
[99]  Guo Z F, Wilson M and Liu J Q. 2007. Post-collisional adakites in south Tibet: P roducts of partial melting of subduction-modified lower crust[J]. Lithos, 96: 205-224.
[100]  Griffin W L, Pearson N J, Belousova E, Jackson S E, Van Achterbergh E, O\'Reilly S Y and Shee S R. 2000. The Hf isotope composition of cratonic mantle: LA-MC-ICP MS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 64: 133-147.
[101]  Harrison T M, Yin A, Grove M and Lovera O M. 2000. The Zedong window:A record of superposed Tertiary convergence in southeastern Tibet[J]. Jouts of the wor ld: Database, map, and grade and tonnage models. U.S.G.S. Open-File Report: 2005 -1060. [http://pubs.usgs.gov/of/2005/1060/].
[102]  Stern C R and Kilian R. 1996. Role of the subducted slab, mantle wedge and conti nental crust in the generation of adakites from the Andean Austral Volcanic Zone [J]. Contribution to Mineralogy and Petrology, 123: 263-281.
[103]  Sun SS and McDonough W F. 1989. chemical and isotopic systematies of oceanic bas alts implications for mantle composition and processes[J]. Geological Society of London Special Publication, 42: 313-345.
[104]  Turner S, Hawkesworth G, Liu J, Rogers N, Kelley S and Calsteren P V. 1993. Timi ng of Tibetan uplift constrained by analysis of volcanic rocks[J]. Nature, 364 : 50-54.
[105]  Vervoort J D, Patchett P J, Blichert-Toft J and Albarède F. 1999a. Relationship s between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system[J]. Earth and Panletary Science Letters, 168: 79-99.
[106]  Vervoort J D and Blichert-Toft J. 1999b. Evolution of the depleted mantle: Hf is ot ope evidence from juvenile rocks through time[J]. Geochimica et Cosmochimica A cta, 63: 533-556.
[107]  Wallance P and Carmichael I S E. 1992. Sulfur in basaltic magmas[J]. Geochimic a et Cosmochimica Acta, 56: 1863-1874.
[108]  Seedorff E, Dilles J, Proffett J J, Einaudi M, Zurcher L, Stavast W, Johnson D a nd Barton M. 2005. Porphyry deposits: Characteristics and origin of hypogene fea tures[J]. Economic Geology 100th Anniversary Volume, 251-298.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133