全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2012 

短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用——以西藏念村矿区为例

Keywords: 地质学,斑岩铜矿,短波红外光谱,伊利石结晶度,Al-OH吸收峰位,念村,冈底斯,西藏

Full-Text   Cite this paper   Add to My Lib

Abstract:

作为世界上最重要的一种矿床类型,斑岩铜矿一直是工业界勘查的首选。对此类矿床的勘查,在中-深剥蚀程度的矿区相对简单,而在浅剥蚀的矿区则变得较为困难,这是因为在浅剥蚀的矿区,矿床热液/矿化中心很难快速有效定位。近年来,在矿产勘查领域逐渐得到广泛应用的短波红外光谱技术,可通过特定蚀变矿物反射光谱特征参数系统变化的规律来厘定热液/矿化中心,在块状硫化物及浅成低温矿床中显示出良好的应用效果,这为浅剥蚀斑岩铜矿热液/矿化中心的快速、有效厘定提供了一种途径。为此,文章选择了位于冈底斯斑岩铜矿带东段、剥蚀较弱的念村(即夏玛日)矿区,拟通过矿区样品短波红外光谱的系统测量,寻找出蚀变矿物反射光谱特征参数系统变化的规律,进而约束矿床热液/矿化中心。本次研究在念村矿区共识别出7种蚀变矿物,按出现频率由多至少依次为伊利石、绿泥石、蛋白石、叶蜡石、高岭石、绿帘石及多硅白云母;而且,矿区外围以伊利石-绿泥石±绿帘石蚀变矿物组合为主,向内逐渐过渡为伊利石±蛋白石、伊利石-叶蜡石±高岭石组合。通过对伊利石反射光谱特征参数的计算发现,伊利石结晶度及Al-OH吸收峰位,这些通常被认为与伊利石形成温度有关的光谱学参数,在该矿区呈现出系统的变化规律:在矿区东北部,伊利石结晶度较大(>1.6),Al-OH吸收峰位较小(<2203nm),而该区域的外围,伊利石结晶度变小,Al-OH吸收峰位变大。这表明矿区东北部伊利石的形成温度更高,暗示该区域可能为矿床热液/矿化中心。因此,建议在本次研究所圈定的热液/矿化中心范围内,在适当开展物探工作的基础上,尽快布置勘查工程进行验证,以实现矿床的尽快查找和突破。

References

[1]  曹 烨,李胜荣, 申俊峰, 要梅娟, 李庆康, 毛付龙. 2008. 便携式短波红外光谱 矿物测量仪(PIMA) 在河南前河金矿热液蚀变研究中的应用[J]. 地质与勘探, 44: 82-8 6.
[2]  侯增谦, 郑远川, 杨志明 . 2012. 大陆碰撞成矿作用: Ⅰ.西藏新生代斑岩成矿系统[J]. 矿床地质, 31(4): 647-670.
[3]  连长云, 章 革, 元春华. 2005a. 短波红外光谱矿物测量技术在普朗斑岩铜矿区热液蚀变 矿物填图中的应用[J]. 矿床地质, 24: 621-637.
[4]  连长云, 章 革, 元春华, 杨 凯. 2005b. 短波红外光谱矿物测量技术在热液蚀变矿物填 图中的应用——以土屋斑岩铜矿床为例[J]. 中国地质, 32: 483-495.
[5]  徐庆生, 郭 健, 刘 阳, 黄树峰, 李秋平, 陈玉水. 2011. 近红外光谱矿物分析技术在帕 南铜-钼-钨矿区蚀变矿物填图中的应用[J]. 地质与勘探, 47: 107-112.
[6]  杨志明,侯增谦,宋玉财,李振清,夏代详,潘凤雏. 2008. 西藏驱龙超大型斑岩铜矿床: 地质、蚀变与矿化[J]. 矿床地质, 27: 279-318.
[7]  章 革, 连长云, 元春华. 2004. PIMA在云南普朗斑岩铜矿矿物识别中的应用[J]. 地学 前缘, 11(4): 460.
[8]  章 革, 连长云, 王润生. 2005. 便携式短波红外矿物分析仪(PIMA)在西藏墨竹工卡县驱 龙铜矿区矿物填图中的应用[J]. 地质通报, 24: 480-484.
[9]  赵利青, 邓 军, 原海涛, 李晓英. 2008. 台上金矿床蚀变带短波红外光谱研究[J]. 地 质与勘探, 44: 58-63.
[10]  Arne D, Bierlein F, McKnight S and Mernagh T. 1999. Recognition of wall-rock alt eration in sediment-hosted mesothermal gold deposits: Excamples from central Vic toria[J]. Australian Institute of Geoscientists Bulletin, 30: 89-96.
[11]  Chang Z S, Hedenquist J W, White N C, Cooke D R, Roach M, Deyell C L, Garcia J, Gemmell J B, McKnight S and Cuison A L. 2011. Exploration tools for linked porph yry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines[J]. Econ. Geol., 106: 1365-1398.
[12]  Chang Z S and Yang Z M. 2012. Evaluation of inter-instrument variations between short wavelength infra-red (SWIR) devices[J]. Econ. Geol., (in press).
[13]  Yang K, Huntington J F and Scott K M. 1998. Spectral characterisation of the hyd rothermal alteration at Hishikari, Japan[R]. Proceedings-International Symposi um on Water-Rock Interaction, 9: 587-590.
[14]  Yang K, Huntington J F, Browne P R L and Ma C. 2000. An infra-red spectral refle ctance study of hydrothermal alteration minerals from the Te Mihi sector of the Wairakei geothermal system, New Zealand[J]. Geothermics, 29: 377-392.
[15]  Yang K, Browne P R L, Huntington J F and Walshe J L. 2001. Cha--racterising the hy drothermal alteration of the Broadlands-Ohaaki geothermal system, New Zealand, u sing short-wave infra-red spectroscopy[J]. Journal of Volcanology and Geotherm al Research, 106: 53-65.
[16]  Yang K, Huntington J F, Scott K M and Mason P. 2004. Compositional variations of white mica in the footwall hydrothermal alteration system of the Hellyer Zn-Pb deposit, Tasmania[M]. Publication Series-Australasian Institute of Mining an d Metallurgy, 5: 283-288.
[17]  Yang K, Lian C, Huntington J F, Peng Q and Wang Q.
[18]  Duba D and Williams-Jones A E. 1983. The application of illite crystallinity, or ganic matter reflectance, and isotopic techniques to mineral exploration: A case study in southwestern Gaspé, Quebec[J]. Econ. Geol., 78: 1350-1363.
[19]  Evans B W and Guggenheim S. 1988. Talc, pyrophyllite and related minerals[A]. In : Bailey S W, Ed. Hydrous phyllosilicates (Exclusive of micas)[M]. Reviews in Mineralogy, 19: 225-294.
[20]  Hauff P and Cocks T. 1992. Short wave infra-red spectroscopy techniques applied to exploration: Emphasis on alteration mineralogy[J]. Contributions of the Eco nomic Geology Research Unit, 44: 72-74.
[21]  Herrmann W, Blake M, Doyle M, Huston D, Kamprad J, Merry N and Pontual S. 2001. Short wavelength infra-red (SWIR) spectral analysis of hydrothermal alteration z ones associated with base metal sulfide deposits at Rosebery and Western Tharsis , Tasmania, and Highway-Reward, Queensland[J]. Econ. Geol., 96: 939-955.
[22]  Jin Z D, Zhu J C, Ji J F, Lu X W and Li F C. 2001. Ore-forming fluid constraints on illite crystallinity (IC) at Dexing porphyry copper deposit, Jiangxi Provinc e[J]. Science in China (Series D): 44: 177-184.
[23]  Jones S,??づひ????湮映牗愠?牮敤搠?獥灭敭捥瑬牬愠汊?牂攮映氲‰攰挵琮愠湓捨敯?捴栠慷牡慶捥瑬敥牮楧穴慨琠楩潮湦?潡昭?瑥桤攠?桰祥摣牴潲瑡桬攠牣洠慨污?慡汣瑴敥牲慩瑳楴潩湣?愠瑯?琠桴敨?吠畈睗甠??畲??畯?携攠?灭潰獬楩瑣??塩楯湮橳椠慦湯杲???桰楬湯慲孡?嵩???楩湮攠牴慨汥椠畍浹??攠灆潡獬楬瑳愠???っ???????????戠牭??女慩湶来?????畩湤瑥椠湣条瑭潰測???????敶浥浲攠汉汳?????愠湂摲?却捩潳瑨琠???????ち?ㄠ??噮慡牤椠慡瑛楊潝渮猠?楣湯?挮漠浇灥潯獬椮琬椠?漰渰?愠渲搷″愭戲甹渴搮愼湢捲放?潌景?睥桬楬琠敊?浄椠捡慮?椠湇?瑩桬敢?桲祴搠牊漠瑍栮攠爱洹愷氰?愠汌瑡整牥慲瑡楬漠湡?獤礠獶瑥敲浴?慣瑡??敡汬汴祥敲牡??呯慮猭浭慩渭椭慮??慡獬?牺敡瘠整慩汯敮搠?扯祮?楮湧映物慮?牰敯摲?牨敹晲汹攠捯瑲慥渠捤敥?獯灳敩捴瑳牛潊獝挮漠灅祣孯?崮???潯畬爮測愠氶‵漺映″?攳?漴挰核攮洼楢捲愾氠??硯灴汴漠牋愠瑍椠潡湮???ち??????????? Spectral reflectance studies of white micas[R]. CS IRO Exploration and Mining Report 439R, Sydney, Australia.
[24]  Sillitoe R H. 2010. Porphyry copper systems[J]. Econ. Geol., 105: 3-41.
[25]  Thompson A J B, Hauff P L and Robitaille J A. 1999. Alteration mapping in explor ation: Application of short-wave infra-red (SWIR) spectroscopy[J]. SEG Newslet ter, 39: 16-27.
[26]  更多...
[27]  Thompson A J B, Scott K, Huntington J and Yang K. 2009. Mapping mineralogy with reflectance spectroscopy: Examples from volcanogenic massive sulfide deposits[J]. Reviews in Economic Geology, 16: 25-40.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133