全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2012 

山西堡子湾-九对沟金(钼)矿区岩石地球化学特征及其意义

Keywords: 地球化学,隐爆角砾岩型矿床,金钼矿床,山西堡子湾

Full-Text   Cite this paper   Add to My Lib

Abstract:

山西堡子湾金矿为一隐爆角砾岩型金矿,新近在其南西9km处的九对沟地区又发现了隐爆角砾岩型钼矿。堡子湾金矿与二长花岗(斑)岩成矿关系密切,矿区二长花岗(斑)岩为过铝质钙碱性岩石,w(SiO2)为74.22%,K2O/Na2O比值为0.88,w(K2O+Na2O)为3.32%,铝饱和指数A/CNK为1.97,σ为0.35;ΣREE为66.4×10-6,无明显Eu异常(δEu=0.93)。九对沟钼矿则与流纹斑岩具成因联系,该流纹斑岩为过铝质高钾钙性岩石,w(SiO2)为75.92%~77.0%,K2O/Na2O比值为1.94~44.67,w((K2O+Na2O)为5.48%~7.4%,铝饱和指数A/CNK为1.35~1.65,σ为0.91~1.61;ΣREE为80.6×10-6~100.2×10-6,具弱负Eu异常(δEu=0.49~0.74)。与成矿密切相关的两类岩石同位素地球化学特征〔(87Sr/86Sr)初始比值为0.703301~0.706664,εNd(t)为-9.42~-19.39〕显示:它们可能来自Ⅰ型富集地幔,为同一源区岩浆演化而来的不同产物。氧化程度高、分异演化程度低的二长花岗质岩浆是形成堡子湾金矿床的重要控制因素,而相对氧化程度低、分异演化程度高的流纹质岩浆与九对沟钼矿化密切相关。

References

[1]  Ishihara S. 1998. Granitoid series and mineralization in the Circum-Pacific Phanerozoic granitic belts[J]. Resour. Geol., 48:219-224.
[2]  Lang J R, Stanley C R and Thompson J F H. 1995. Prophyry copper-gold deposits related to alkalic igneous rocks in the Triassic-Jurassic arc terranes of British Columbia[A]. In: Bolm J, Pierce F W. Porphyry copper deposits of the American Cordillera[C]. Ariz. Geol. Soc., digest, 20:219-236.
[3]  Liang H Y, Sun W D, Su W C and Zartman R E. 2007. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration[J]. Econ. Geol., 104:587-596.
[4]  Martin H. 1999. Adakitic magmas: Modern analogues of Archean granitoids[J]. Lithos, 46:411-429.
[5]  Misra K C. 2000. Understanding mineral deposits[M]. Kluwer Academic Publishers. 353-413.
[6]  Mitchell A H G. 1973. Metallogenetic belts and angle of dip of Benioff zones[J]. Nature, 245:49-52.
[7]  Mungall J E. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits[J]. Geology, 30(10): 915-918.
[8]  Peccerillo A and Taylor S R. 1976. Geochemistry of Eocene calc-alkaline rocks from Kastamonu area, Northern Turkey[J]. Contr. Miner. and Petrol., 58:63-81.
[9]  Sajona F G, Maury R C, Bellon H, Cotton J, Defant M J and Pubellier M. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines[J]. Geology, 21:1007-1010.
[10]  曹国雄,高太忠,吴有民. 2000. 堡子湾金矿同位素及稀土元素地球化学研究[J]. 地质地球化学,28(1):10-14.
[11]  冯学刚,李占新,刘新江. 1999. 山西省堡子湾隐爆角砾岩型金矿富集规律[J]. 华北地质矿产杂志, 14 (1): 101-105.
[12]  郭淑芳. 2003. 山西堡子湾金矿床地质特征及成因[J]. 黄金, 24(18):18-20.
[13]  何云龙,魏俊浩,谭文娟,李 晶. 2008. 山西堡子湾隐爆角砾岩型金矿矿床隐爆机制研究[J]. 矿产与地质, 22(5):377-380.
[14]  侯增谦,曲晓明,黄 卫,高永丰. 2001. 冈底斯斑岩铜矿成矿带有望成为西藏第二条"玉龙"铜矿带[J]. 中国地质,28(10):27-29.
[15]  侯增谦,莫宣学,高永丰,屈晓明,孟祥金. 2003. 埃达克岩:斑岩铜矿的一种可能得重要含矿母岩——以西藏和智利斑岩铜矿为例[J]. 矿床地质,22(1):1-12.
[16]  侯增谦,潘小菲,杨志明,曲晓明. 2007. 初论大陆环境斑岩铜矿[J]. 现代地质,21(2): 332-351.
[17]  黄典豪,吴澄宇,杜安道,何红蓼. 1994. 东秦岭地区钼矿床的铼-饿同位素年龄及其意义[J]. 矿床地质, 13(3): 221-230.
[18]  李长城,曹志强,陈春娥,韩文德,温春贵. 2003. 九对沟金矿物化探特征及找矿方向[J]. 地质找矿论丛, 18(3): 203-207.
[19]  李厚民,叶会寿, 毛景文, 王登红, 陈毓川, 曲文俊, 杜安道. 2007. 小秦岭金(钼)矿床铼-饿定年及其地质意义[J]. 矿床地质, 26(4):417-424.
[20]  李金祥,秦克章,李光明. 2006. 富金斑岩型铜矿床的基本特征、成矿物质来源与成矿高氧化岩浆-流体演化[J]. 岩石学报,22(3):678-688.
[21]  李景云,聂维清,张维根. 1996. 山西省堡子湾金矿地质特征[J]. 矿床地质, 15(3): 216-228.
[22]  卿 敏,韩先菊. 2002. 隐爆角砾岩型金矿研究评论[J]. 黄金地质,8(2):1-7.
[23]  芮宗瑶,张立生,陆振宇,王龙生,刘玉琳,王义天. 2004. 斑岩铜矿的源岩及其源区探讨[J]. 岩石学报,20(2):229-238.
[24]  芮宗瑶,侯增谦,李光明,张立生,王龙生,唐索寒. 2006. 俯冲、碰撞、深断裂和埃达克岩与斑岩铜矿[J]. 地质与勘探, 42(1):1-6.
[25]  山西省地质局. 1969. 1:20万大同幅地质图[M]. 山西省地质局区域地质测量队革命委员会批准出版(受山西省地质局军代表委托),国营五四三厂印刷.
[26]  山西省地质矿产局. 1989. 山西省区域地质志[M]. 地质出版社, 1-780.
[27]  吴保全. 2003. 山西堡子湾金矿床地质地球化学特征[J]. 铀矿地质,19(4):220-224.
[28]  吴华英,张连昌,陈志广,万 博. 2008. 内蒙古西拉木伦成矿带库里吐钼(铜)矿区二长花岗岩地球化学、构造环境及含矿性分析[J]. 岩石学报, 24(4): 867-878.
[29]  张北廷,邢福林,张 承,刘凤岐,马文忠. 1997. 山西阳高堡子湾金矿地质特征及找矿标志[J]. 华北地质矿产杂志, 12(1): 75-84.
[30]  更多...
[31]  张连昌,吴华英,相 鹏,张晓静,陈志广,万 博. 2010. 中生代复杂构造体系的成矿作用——以华北大陆北缘西拉木伦多金属成矿带为例[J]. 岩石学报, 26 (5): 1351-1362.
[32]  张 旗,王 焰,王元龙. 2001. 燕山期中国东部高原下地壳组成初探:埃达克质岩同位素Sr、Nd制约[J]. 岩石学报,17(4):504-513.
[33]  张文亮,李朝辉. 2001. 堡子湾金矿床成因及成矿模式[J]. 地质找矿论丛, 16(2):125-130.
[34]  朱翠伊, 廖永骨, 卿 敏, 韩 旭. 2002. 山西堡子湾金矿成矿时代探讨[J]. 黄金地质, 8(1):17-20.
[35]  Blevin P L. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implication for gold-rich ore systems[J]. Resour. Geol., 54(3):241-252.
[36]  Chappell B W and White A J R. 2001. Two contransting granite types: 25 years later[J]. Aust. J. Earth. Sci., 48:489-499.
[37]  Cline J and Bodnar R J. 1991. Can economic porphyry copper minera-lization be generated by a typical calc-alkaline melt[J]. J. Geophy. Res., 96:8113-8126.
[38]  Cooke D R, Hollings P and Walsh J L. 2005. Giant porphyry deposits: Characteristics, distribution and tectonic controls[J]. Econ. Geol., 100(5): 801-818.
[39]  Cox D P and Singer D A. 1988. Distribution of gold in porphy copper deposits: U.S.[M]. Geological Survey Open-File Report,22:88-46.
[40]  Cox K J, Bell J D and Pankhurst R J. 1979. The interpretation of igneous rocks[M]. Allen and Unwin, London, London:450.
[41]  Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 34:662-665.
[42]  Hildreth W and Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of central Chile[J]. Contri. Miner. Petrol., 98:455-489.
[43]  Hou Z Q, Yang Z M, Qu X M, Meng X J, Li Z Q, Beaudoin G, Rui Z Y, Gao Y F and Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan orogen[J]. Ore Geol. Rev., 36: 25-51.
[44]  Hou Z Q, Zhang H R, Pan X F and Yang Z M. 2011. Porphyry Cu(-Mo-Au) deposits related to melting of thickened mafic lower crust:Examples from the eastern Tethyan metallogenica domain[J]. Ore Geol. Rev., 39:21-45.
[45]  Sillitoe R H. 1972. A plate tectonic model for the origin of porphyry copper deposits[J]. Econ. Geol., 67:184-197.
[46]  Sillitoe R H. 2000. Gold-rich porphyry copper deposits: Descriptive and genetic models and their role in exploration and discovery[A]. In: Hagemann S G and Brown P E, eds. Gold in 2000[C]. Society of Economic Geologists Reviews in Economic Geology, 13:315-345.
[47]  Spooner E T C. 1993. Magmatic sulphide/volatile interaction as a mechanism for producing chalcophile element enriched, Archean Au-quartz, epithermal Au-Ag and Au skarn hydrothermal ore fluids[J]. Ore Geol. Rev., 7:359-379.
[48]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of ocean basalts: implications for mantle composition and processes[A]. In: Saunders A D, Norry M J, ed. Magmatism in ocean basin[C]. Geol. Soc. London. Spec. Pub. 42:315-345.
[49]  Wan B, Hegner E, Zhang L C, Rocholl A, Chen Z G, Wu H Y and Chen F K. 2009. Rb-Sr Geochronology of Chalcopyrite from the Chehugou porphyry Mo-Cu deposit (Northeast China) and Geochemical Constraints on the Origin of Hosting Granites[J]. Econ. Geol., 104: 351-363.
[50]  Wang Q, Xu J F, Jian P, Bao Z W, Zhao Z H, Li C F, Xiong X L and Ma J L. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization[J]. J. Petrol., 47(1):119-144.
[51]  Westra G and Keith S B. 1981. Classification and genesis of stockwork molybdenum deposits[J]. Econ. Geol., 76:844-873.
[52]  White W H, Bookstrom A A, Kamilli R J, Ganster M W, Smith R P, Ranta D E and Steininger R C. 1981. Character and origin of Climax-type molybdenum deposits[J]. Economic Geology 75th Anniversary Volume, 270-316.
[53]  Wood D A, Joron J L, Treuil M, Norry M and Tarney J. 1979. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor[J]. Contrib. Mineral. Petrol., 70:3219-3339.
[54]  Woodcock J R and Hollister V F. 1978. Porphyry molybdenite deposits of the North American cordillera[J]. Miner. Sci. Eng., 10:3-18.
[55]  Yan F Z. 2000. Puziwan gold deposit in Shanxi, China:A special linear cryptoexplosive breccia type gold deposit[J]. Acta Geol. Sin., 72(2):554-558.
[56]  Yang Z M, Hou Z Q, White N C, Chang Z S, Li Z Q and Song Y C. 2009. Geology of the post-collisional porphyry copper molybdenum deposit at Qulong, Tibet[J]. Ore Geol. Rev, 36:133-159.
[57]  Zhang L C, Wu H Y, Wan B and Chen Z G. 2009. Ages and geodynamic settings of Xilamulun Mo-Cu metallogenic belt in the northern part of the North China Craton[J]. Gondwana Research, 16: 243-254.
[58]  Zindler A and Hart S. 1986. Chemical geodynamics[J]. Ann. Rev. Earth Planet Sci., 14: 493-571.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133