Ishihara S. 1998. Granitoid series and mineralization in the Circum-Pacific Phanerozoic granitic belts[J]. Resour. Geol., 48:219-224.
[2]
Lang J R, Stanley C R and Thompson J F H. 1995. Prophyry copper-gold deposits related to alkalic igneous rocks in the Triassic-Jurassic arc terranes of British Columbia[A]. In: Bolm J, Pierce F W. Porphyry copper deposits of the American Cordillera[C]. Ariz. Geol. Soc., digest, 20:219-236.
[3]
Liang H Y, Sun W D, Su W C and Zartman R E. 2007. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration[J]. Econ. Geol., 104:587-596.
[4]
Martin H. 1999. Adakitic magmas: Modern analogues of Archean granitoids[J]. Lithos, 46:411-429.
[5]
Misra K C. 2000. Understanding mineral deposits[M]. Kluwer Academic Publishers. 353-413.
[6]
Mitchell A H G. 1973. Metallogenetic belts and angle of dip of Benioff zones[J]. Nature, 245:49-52.
[7]
Mungall J E. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits[J]. Geology, 30(10): 915-918.
[8]
Peccerillo A and Taylor S R. 1976. Geochemistry of Eocene calc-alkaline rocks from Kastamonu area, Northern Turkey[J]. Contr. Miner. and Petrol., 58:63-81.
[9]
Sajona F G, Maury R C, Bellon H, Cotton J, Defant M J and Pubellier M. 1993. Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines[J]. Geology, 21:1007-1010.
Blevin P L. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implication for gold-rich ore systems[J]. Resour. Geol., 54(3):241-252.
[36]
Chappell B W and White A J R. 2001. Two contransting granite types: 25 years later[J]. Aust. J. Earth. Sci., 48:489-499.
[37]
Cline J and Bodnar R J. 1991. Can economic porphyry copper minera-lization be generated by a typical calc-alkaline melt[J]. J. Geophy. Res., 96:8113-8126.
[38]
Cooke D R, Hollings P and Walsh J L. 2005. Giant porphyry deposits: Characteristics, distribution and tectonic controls[J]. Econ. Geol., 100(5): 801-818.
[39]
Cox D P and Singer D A. 1988. Distribution of gold in porphy copper deposits: U.S.[M]. Geological Survey Open-File Report,22:88-46.
[40]
Cox K J, Bell J D and Pankhurst R J. 1979. The interpretation of igneous rocks[M]. Allen and Unwin, London, London:450.
[41]
Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 34:662-665.
[42]
Hildreth W and Moorbath S. 1988. Crustal contributions to arc magmatism in the Andes of central Chile[J]. Contri. Miner. Petrol., 98:455-489.
[43]
Hou Z Q, Yang Z M, Qu X M, Meng X J, Li Z Q, Beaudoin G, Rui Z Y, Gao Y F and Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan orogen[J]. Ore Geol. Rev., 36: 25-51.
[44]
Hou Z Q, Zhang H R, Pan X F and Yang Z M. 2011. Porphyry Cu(-Mo-Au) deposits related to melting of thickened mafic lower crust:Examples from the eastern Tethyan metallogenica domain[J]. Ore Geol. Rev., 39:21-45.
[45]
Sillitoe R H. 1972. A plate tectonic model for the origin of porphyry copper deposits[J]. Econ. Geol., 67:184-197.
[46]
Sillitoe R H. 2000. Gold-rich porphyry copper deposits: Descriptive and genetic models and their role in exploration and discovery[A]. In: Hagemann S G and Brown P E, eds. Gold in 2000[C]. Society of Economic Geologists Reviews in Economic Geology, 13:315-345.
[47]
Spooner E T C. 1993. Magmatic sulphide/volatile interaction as a mechanism for producing chalcophile element enriched, Archean Au-quartz, epithermal Au-Ag and Au skarn hydrothermal ore fluids[J]. Ore Geol. Rev., 7:359-379.
[48]
Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of ocean basalts: implications for mantle composition and processes[A]. In: Saunders A D, Norry M J, ed. Magmatism in ocean basin[C]. Geol. Soc. London. Spec. Pub. 42:315-345.
[49]
Wan B, Hegner E, Zhang L C, Rocholl A, Chen Z G, Wu H Y and Chen F K. 2009. Rb-Sr Geochronology of Chalcopyrite from the Chehugou porphyry Mo-Cu deposit (Northeast China) and Geochemical Constraints on the Origin of Hosting Granites[J]. Econ. Geol., 104: 351-363.
[50]
Wang Q, Xu J F, Jian P, Bao Z W, Zhao Z H, Li C F, Xiong X L and Ma J L. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization[J]. J. Petrol., 47(1):119-144.
[51]
Westra G and Keith S B. 1981. Classification and genesis of stockwork molybdenum deposits[J]. Econ. Geol., 76:844-873.
[52]
White W H, Bookstrom A A, Kamilli R J, Ganster M W, Smith R P, Ranta D E and Steininger R C. 1981. Character and origin of Climax-type molybdenum deposits[J]. Economic Geology 75th Anniversary Volume, 270-316.
[53]
Wood D A, Joron J L, Treuil M, Norry M and Tarney J. 1979. Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor[J]. Contrib. Mineral. Petrol., 70:3219-3339.
[54]
Woodcock J R and Hollister V F. 1978. Porphyry molybdenite deposits of the North American cordillera[J]. Miner. Sci. Eng., 10:3-18.
[55]
Yan F Z. 2000. Puziwan gold deposit in Shanxi, China:A special linear cryptoexplosive breccia type gold deposit[J]. Acta Geol. Sin., 72(2):554-558.
[56]
Yang Z M, Hou Z Q, White N C, Chang Z S, Li Z Q and Song Y C. 2009. Geology of the post-collisional porphyry copper molybdenum deposit at Qulong, Tibet[J]. Ore Geol. Rev, 36:133-159.
[57]
Zhang L C, Wu H Y, Wan B and Chen Z G. 2009. Ages and geodynamic settings of Xilamulun Mo-Cu metallogenic belt in the northern part of the North China Craton[J]. Gondwana Research, 16: 243-254.
[58]
Zindler A and Hart S. 1986. Chemical geodynamics[J]. Ann. Rev. Earth Planet Sci., 14: 493-571.