全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2012 

古溶洞控矿构造在青藏高原中部的发现及意义——以茶曲帕查铅锌矿床为例

Keywords: 地质学,古溶洞,控矿构造,铅锌矿床,茶曲帕查,青藏高原中部

Full-Text   Cite this paper   Add to My Lib

Abstract:

青藏高原中部茶曲帕查矿区铅锌矿化与张性碳酸盐岩角砾伴生。钻孔资料揭示,该套角砾岩在平面上、垂向上分布无规律,露头表现为杂乱堆垛,角砾空隙间常充填泥质物,与泥质物接触部位发育同沉积变形,说明角砾为古溶洞内坍塌形成。茶曲帕查矿区古溶洞内含有坍塌灰岩角砾和泥质充填物,分别发育不同形式的铅锌矿化。溶洞的形成很可能与地下水对碳酸盐岩的溶蚀有关,坍塌发生在早中新世,与五道梁组沉积同时发生。古溶洞成矿作用在青藏高原中部的提出,对认识该区矿床成因、区域铅锌找矿模式等方面均具有重要意义。

References

[1]  陈文西, 王 剑, 汪正江, 付修根. 2007. 藏北羌塘盆地菊花山地区晚三叠世古岩溶不整合面的发现及其意义[J]. 地质论评, 53(5): 699-703.
[2]  崔之久, 洪 云, 高全洲, 陈怀录. 1996. 青藏高原东北部古喀斯特过程与环境[J]. 地理学报, 51(5): 408-417.
[3]  刘功余, 邓自强, 张美良. 1988. 岩溶矿床的研究现状及展望[J]. 中国岩溶, 9(1): 1-13.
[4]  罗允义. 2003. 桂西古岩溶型金矿地质特征[J]. 中国地质, 30(2): 179-185.
[5]  马孝达. 1981. 西藏中部奇林湖北岸的岩溶地貌[J]. 地质论评, 27(3): 274-276.
[6]  宋玉财. 2009. "三江"沉积岩容矿贱金属矿床:发育特点与成矿模型[D]. 博士后出站报告. 北京: 中国地质科学院.
[7]  宋玉财, 侯增谦, 杨天南, 张洪瑞, 杨竹森, 田世洪, 刘英超, 王晓虎, 刘燕学, 薛传东, 王光辉, 李 政. 2011. "三江" 喜马拉雅期沉积岩容矿贱金属矿床基本特征与成因类型[J]. 岩石矿物学杂志, 30(3): 355-380.
[8]  汪劲草, 常家良. 2000. 湖南江永铅锌矿床岩溶成矿构造系列及其演化[J]. 地质找矿论丛, 15(2): 159-165.
[9]  王贵仁, 宋玉财, 邹公明, 侯增谦, 杨竹森, 杨天南, 张洪瑞, 刘燕学, 李 政, 汪元奎, 刘 群, 然见多杰, 赵呈祥, 翟忠保. 2012. 青海南部茶曲帕查Pb-Zn矿床的勘查历史、现状与下一步找矿方向[J]. 岩石矿物学杂志, 31(1): 79-90.
[10]  王 剑, 付修根, 陈文西, 汪正江. 2007. 藏北北羌塘盆地晚三叠世古风化壳地质地球化学特征及其意义[J]. 沉积学报, 25(4): 487-494.
[11]  王则江. 1985. 我国南方一些古岩溶洞穴沉积铅锌矿床的成矿特征[J]. 矿物岩石, 3(1): 1-11.
[12]  肖振民, 郭晓山. 1984. 栖霞山铅锌矿区古岩溶发育及其控矿性[J]. 地质论评, 30(4): 365-370.
[13]  翟裕生. 1993. 矿田构造学[M]. 北京: 地质出版社.
[14]  张洪瑞. 2010. 三江北段沉积岩容矿铅锌矿床矿区构造变形与控矿模型[D]. 博士学位论文. 北京: 中国地质科学院.
[15]  张洪瑞, 侯增谦, 杨天南, 宋玉财, 李 政, 王召林, 王晓虎, 汪元奎, 刘 群. 2010. 青藏高原北羌塘南缘俯冲型石英正长斑岩的发现: 来自地球化学分析证据[J]. 地质论评, 56(3): 403-412.
[16]  张洪瑞, 杨天南, 侯增谦, 宋玉财, 汪元奎, 刘 群. 2011. 三江北段茶曲帕查矿区构造变形与铅锌矿化[J]. 岩石矿物学杂志, 30(3): 475-486.
[17]  Bosak P. 2008. Karst processes and time[J]. Geologos, 14(1): 19-36.
[18]  Corbella M, Ayora C and Cardellach E. 2004. Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposits[J]. Mineralium Deposita, 39(3): 344-357.
[19]  更多...
[20]  Cui Z J, Gao Q Z, Liu G N, Pan B T and Chen H L. 1996. Planation surfaces, palaeokarst and uplift of Xizang (Tibet) Plateau[J]. Science in China (Ser.D Earth Sciences), 39: 391-400.
[21]  Eliassen A and Talbot M R. 2005. Solution-collapse breccias of the Minkinfjellet and Wordiekammen Formations, Central Spitsbergen, Svalbard: a large gypsum palaeokarst system[J]. Sedimentology, 52(4): 775-794.
[22]  Friedman G M. 1997. Dissolution-collapse breccias and paleokarst resulting from dissolution of evaporite rocks, especially sulfates[J]. Carbonates and Evaporites, 12(1): 53-63.
[23]  Ge H and Jackson M P A. 1998. Physical modeling of structures formed by salt withdrawal: Implications for deformation caused by salt dissolution[J]. AAPG Bulletin, 82: 228-250.
[24]  Jebrak M. 1997. Hydrothermal breccias in vein-type ore deposits: A review of mechanisms, morphology and size distribution[J]. Ore Geology Reviews, 12(3): 111-134.
[25]  Leach D L, Sangster D L, Kelly K D, Large R R, Garven G, Allen C R, Gutzmer J and Walter S. 2005. Sediment-hosted lead-zinc deposits: A global perspective[A]. In: Hedenquist J W, Thompson J F H, Goldfarb R J and Richards J P, eds. SEG 100th Anniversary Special Publication. 561-607.
[26]  Leach D L, Taylor R D, Fey D L, Diehl S F and Saltus R W. 2010. A deposit model for Mississippi Valley-Type lead-zinc ores, chap. A of Mineral deposit models for resource assessment[C]. U.S. Geological Survey Scientific Investigations Report 2010-5070-A.
[27]  Lee M J and Wilkinson J J. 2002. Cementation, hydrothermal alteration, and Zn-Pb mineralization of carbonate breccias in the Irish Midlands: textural evidence from the Cooleen zone, near Silvermines, County Tipperary[J]. Economic Geology, 97(3): 653-662.
[28]  Loucks R G. 1999. Paleocave carbonate reservoirs: Origins, burial-depth modifications, spatial complexity, and reservoir implications[J]. AAPG Bulletin, 83: 1795-1834.
[29]  Loucks R G, Mescher P K and McMechan G A. 2004. Three-dimensional architecture of a coalesced, collapsed-paleocave system in the Lower Ordovician Ellenburger Group, central Texas[J]. AAPG Bulletin, 88(5): 545-564.
[30]  McDonnell A, Loucks R G and Dooley T. 2007. Quantifying the origin and geometry of circular sag structures in northern Fort Worth Basin, Texas: Paleocave collapse, pull-apart fault systems, or hydrothermal alteration[J]? AAPG Bulletin, 91(9): 1295-1318.
[31]  Ohle E L. 1985. Breccias in Mississippi Valley-type deposits[J]. Econ. Geol., 80(6): 1736-1752.
[32]  Palmer A N. 1991. Origin and morphology of limestone caves[J]. Geological Society of America Bulletin, 103(1): 1-21.
[33]  Sass-Gustkiewicz M. 1996. Internal sediments as a key to understanding the hydrothermal karst origin of the Upper Silesian Zn-Pb ore deposits[A]. in: Sangster D F, ed. Carbonate-hosted lead-zinc deposits[M]. Economic Geology, Special Publication. 171-181.
[34]  Taylor R. 2009. Ore Textures: Recognition and Interpretation [M]. Springer Verlag.
[35]  赵政璋, 李永铁, 叶和飞. 2001. 青藏高原地层[M]. 北京: 科学出版社.
[36]  Bertoni C and Cartwright J A. 2005. 3D seismic analysis of circular evaporite dissolution structures, Eastern Mediterranean[J]. Journal of the Geological Society, 162(6): 909-926.
[37]  Wu Z H, Barosh P J, Wu Z H, Hu D G, Zhao X and Ye P S. 2008. Vast early Miocene lakes of the central Tibetan Plateau[J]. Geological Society of America Bulletin, 120(9-10): 1326-1337.
[38]  Yang T N, Zhang H R, Liu Y X, Wang Z L, Song Y C, Yang Z S, Tian S H, Xie H Q and Hou K J. 2011. Permo-Triassic arc magmatism in central Tibet: Evidence from zircon U-Pb geochronology, Hf isotopes, rare earth elements, and bulk geochemistry[J]. Chemical Geology, 284: 270-282.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133