Bosak P. 2008. Karst processes and time[J]. Geologos, 14(1): 19-36.
[18]
Corbella M, Ayora C and Cardellach E. 2004. Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposits[J]. Mineralium Deposita, 39(3): 344-357.
[19]
更多...
[20]
Cui Z J, Gao Q Z, Liu G N, Pan B T and Chen H L. 1996. Planation surfaces, palaeokarst and uplift of Xizang (Tibet) Plateau[J]. Science in China (Ser.D Earth Sciences), 39: 391-400.
[21]
Eliassen A and Talbot M R. 2005. Solution-collapse breccias of the Minkinfjellet and Wordiekammen Formations, Central Spitsbergen, Svalbard: a large gypsum palaeokarst system[J]. Sedimentology, 52(4): 775-794.
[22]
Friedman G M. 1997. Dissolution-collapse breccias and paleokarst resulting from dissolution of evaporite rocks, especially sulfates[J]. Carbonates and Evaporites, 12(1): 53-63.
[23]
Ge H and Jackson M P A. 1998. Physical modeling of structures formed by salt withdrawal: Implications for deformation caused by salt dissolution[J]. AAPG Bulletin, 82: 228-250.
[24]
Jebrak M. 1997. Hydrothermal breccias in vein-type ore deposits: A review of mechanisms, morphology and size distribution[J]. Ore Geology Reviews, 12(3): 111-134.
[25]
Leach D L, Sangster D L, Kelly K D, Large R R, Garven G, Allen C R, Gutzmer J and Walter S. 2005. Sediment-hosted lead-zinc deposits: A global perspective[A]. In: Hedenquist J W, Thompson J F H, Goldfarb R J and Richards J P, eds. SEG 100th Anniversary Special Publication. 561-607.
[26]
Leach D L, Taylor R D, Fey D L, Diehl S F and Saltus R W. 2010. A deposit model for Mississippi Valley-Type lead-zinc ores, chap. A of Mineral deposit models for resource assessment[C]. U.S. Geological Survey Scientific Investigations Report 2010-5070-A.
[27]
Lee M J and Wilkinson J J. 2002. Cementation, hydrothermal alteration, and Zn-Pb mineralization of carbonate breccias in the Irish Midlands: textural evidence from the Cooleen zone, near Silvermines, County Tipperary[J]. Economic Geology, 97(3): 653-662.
[28]
Loucks R G. 1999. Paleocave carbonate reservoirs: Origins, burial-depth modifications, spatial complexity, and reservoir implications[J]. AAPG Bulletin, 83: 1795-1834.
[29]
Loucks R G, Mescher P K and McMechan G A. 2004. Three-dimensional architecture of a coalesced, collapsed-paleocave system in the Lower Ordovician Ellenburger Group, central Texas[J]. AAPG Bulletin, 88(5): 545-564.
[30]
McDonnell A, Loucks R G and Dooley T. 2007. Quantifying the origin and geometry of circular sag structures in northern Fort Worth Basin, Texas: Paleocave collapse, pull-apart fault systems, or hydrothermal alteration[J]? AAPG Bulletin, 91(9): 1295-1318.
[31]
Ohle E L. 1985. Breccias in Mississippi Valley-type deposits[J]. Econ. Geol., 80(6): 1736-1752.
[32]
Palmer A N. 1991. Origin and morphology of limestone caves[J]. Geological Society of America Bulletin, 103(1): 1-21.
[33]
Sass-Gustkiewicz M. 1996. Internal sediments as a key to understanding the hydrothermal karst origin of the Upper Silesian Zn-Pb ore deposits[A]. in: Sangster D F, ed. Carbonate-hosted lead-zinc deposits[M]. Economic Geology, Special Publication. 171-181.
[34]
Taylor R. 2009. Ore Textures: Recognition and Interpretation [M]. Springer Verlag.
[35]
赵政璋, 李永铁, 叶和飞. 2001. 青藏高原地层[M]. 北京: 科学出版社.
[36]
Bertoni C and Cartwright J A. 2005. 3D seismic analysis of circular evaporite dissolution structures, Eastern Mediterranean[J]. Journal of the Geological Society, 162(6): 909-926.
[37]
Wu Z H, Barosh P J, Wu Z H, Hu D G, Zhao X and Ye P S. 2008. Vast early Miocene lakes of the central Tibetan Plateau[J]. Geological Society of America Bulletin, 120(9-10): 1326-1337.
[38]
Yang T N, Zhang H R, Liu Y X, Wang Z L, Song Y C, Yang Z S, Tian S H, Xie H Q and Hou K J. 2011. Permo-Triassic arc magmatism in central Tibet: Evidence from zircon U-Pb geochronology, Hf isotopes, rare earth elements, and bulk geochemistry[J]. Chemical Geology, 284: 270-282.