全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2012 

江西广丰杨村超大型滑石矿床成因探讨

Keywords: 地质学,鲕粒滑石,稀土元素配分模式,C-O-Sr同位素,同生热水沉积,江西杨村

Full-Text   Cite this paper   Add to My Lib

Abstract:

江西广丰杨村滑石矿储量达上亿吨,是世界上超大型滑石矿床之一。矿石主要由鲕粒状滑石组成,含少量石英和碳酸盐矿物及浸染状有机质,具有典型的沉积鲕粒状结构;赋矿围岩白云岩硅化较强烈。研究结果表明,白云岩与滑石矿页岩标准化稀土元素分配模式基本一致,重稀土元素相对轻稀土元素弱富集,稀土元素总量低,弱负铈异常,并且它们具有相同的87Sr/86Sr比值(0.7092~0.7101),白云岩的δ13CV-PDB值变化范围在-4.9‰~+0.7‰之间,与同期海水大体一致。这些地球化学特征暗示了滑石矿和白云岩具有相同的物质来源,滑石成矿所需的镁可能来源于海水。部分样品显示正铕异常,且白云岩中δ18OV-SMOW值(+14.5‰~+19.7‰)较同期海水偏低,87Sr/86Sr比值比同期海水稍高,暗示成矿物质并非由海水单一提供,可能还有高87Sr/86Sr比值、富硅的热液提供了成矿所需的硅。综合滑石和白云岩岩相学和地球化学特征,认为江西广丰杨村滑石矿为同生热水沉积成因,滑石中镁来源于富镁海水,硅来源于海水下渗淋滤古老硅铝质地层形成的富硅、高87Sr/86Sr比值的热液,海水中镁与热液中硅结合形成滑石。滑石矿在经历了同生沉积-热液期之后,又受到了后期强烈的变质变形作用的叠加,形成了具片理构造的滑石片岩。

References

[1]  陈从喜, 蒋少涌, 蔡克勤, 马冰. 2003. 辽东早元古代富镁质碳酸盐岩建造菱镁矿和滑石矿床成矿条件[J]. 矿床地质, 22(2): 166-176.
[2]  邸素梅, 陈正国. 1993. 广丰萍塘震旦系沉积型黑滑石矿物学特征[J]. 中国非金属矿工业导刊, 4(65): 11-14.
[3]  高剑峰, 陆建军, 赖鸣远, 林雨萍, 濮巍. 2003. 岩石样品中微量元素的高分辨率等离子质谱分析[J]. 南京大学学报: 自然科学版, 39(6): 844-850.
[4]  濮巍, 高剑峰, 赵葵东, 凌洪飞, 蒋少涌. 2005. 利用 DCTA 和 HIBA 快速有效分离 Rb-Sr, Sm-Nd 的方法[J]. 南京大学学报: 自然科学版, 41(4): 445-450.
[5]  张自超. 1995. 我国某些元古宙及早寒武世碳酸盐岩石的锶同位素组成[J]. 地质论评, 41(4): 349-354.
[6]  徐新之. 1990. 江西广丰溪滩滑石岩矿床地质特征[J]. 江西地质, 4(4): 378-385.
[7]  Bartley J K, Pope M, Knoll A H, Semikhatov M A and Petrov P Y U. 1998. A Vendian–Cambrian boundary succession from the northwestern margin of the Siber ian Platform: Stratigraphy, palaeontology, chemostratigraphy and correlation[J]. Geolo gical Magazine, 135(4): 473-494.
[8]  Bau M and Dulski P. 1999. Comparing yttrium and rare earths in hydrothermal flui ds from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater[J]. Chemical Geolo gy, 155(1-2): 77-90.
[9]  Bau M and Mller P. 1992. Rare earth element fractionation in metamorphogenic h ydrothermal calcite, magnesite and siderite[J]. Mineralogy and Petrology, 45(3): 231-246.
[10]  Brand U and Veizer J. 1980. Chemical diagenesis of a multicomponent carbonate sy stem; 1, Trace elements[J]. Journal of Sedimentary Research, 50(4): 1219.
[11]  Brasier M D, Shields G, Kuleshov V N and Zhegallo E A. 1996. Integrated chemo-an d biostratigraphic calibration of early animal evolution: Neoproterozoic early Cambrian of southwest Mongolia[J]. Geological Magazine, 133(4): 445-485.
[12]  Davies J F, Prevec S A, Whitehead R E and Jackson S E. 1998. Variations in REE a nd Sr-isotope chemistry of carbonate gangue, Castellanos Zn-Pb deposit, Cuba[J]. Chemical Geology, 144(1-2): 99-119.
[13]  De Baar H J W, Bacon M P, Brewer P G and Bruland K W. 1985. Rare earth elements in the Pacific and Atlantic Oceans[J]. Geochimica et Cosmochimica Acta, 49(9): 1943-1959.
[14]  Dekov V M, Cuadros J, Shanks W C and Koski R A. 2008. Deposition of talc—keroli te-smectite—smectite at seafloor hydrothermal vent fields: Evidence from minera logical, geochemical and oxygen isotope studies[J]. Chemical Geology, 247(1-2) : 171-194.
[15]  Derry L A, Kaufman A J and Jacobsen S B. 1992. Sedimentary cycling and environme ntal change in the Late Proterozoic: Evidence from stable and radiogenic isotope s[J]. Geochimica et Cosmochimica Acta, 56(3): 1317-1329.
[16]  Elderfield H and Greaves M J. 1982. The rare earth elements in seawater[J]. Na ture, 296: 214-219.
[17]  German C R, Masuzawa T, Greaves M J, Elderfield H and Edmond J M. 1995. Dissolve d rare earth elements in the Southern Ocean: Cerium oxidation and the influence of hydrography[J]. Geochimica et Cosmochimica Acta, 59(8): 1551-1558.
[18]  Halverson G P, Dudás F, Maloof A C and Bowring S A. 2007. Evolution of the 87Sr /86Sr composition of Neoproterozoic seawater[J]. Palaeogeography, Pa laeoclimatology, Palaeoecology, 256(3-4): 103-129.
[19]  Hecht L, Freiberger R, Gilg H A, Grundmann G and Kostitsyn Y A. 1999. Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: Gene tic implications for dolomite-hosted talc mineralization at G pfersgrün (Fichte lgebirge, Germany)[J]. Chemical Geology, 155(1-2): 115-130.
[20]  Jacobsen S B and Kaufman A J. 1999. The Sr, C and O isotopic evolution of Neopro terozoic seawater[J]. Chemical Geology, 161(1-3): 37-57.
[21]  更多...
[22]  Kaufman A J, Jacobsen S B and Knoll A H. 1993. The Vendian record of Sr and C is otopic variations in seawater: Implications for tectonics and paleoclimate[J]. Earth And Planetary Science Letters, 120(3-4): 409-430.
[23]  Kaufman A J and Knoll A H. 1995. Neoproterozoic variations in the C-isotopic com position of seawater: Stratigraphic and biogeochemical implications[J]. Precam brian Research, 73(1-4): 27-49.
[24]  Klinkhammer G, Elderfield H and Hudson A. 1983. Rare earth elements in seawater near hydrothermal vents[J]. Nature, 305: 185-188.
[25]  Linder D E, Wylie A G and Candela P A. 1992. Mineralogy and origin of the State Line talc deposit, Pennsylvania[J]. Econ. Geol., 87(6): 1607.
[26]  Prochaska W. 1989. Geochemistry and genesis of Austrian talc deposits[J]. Appl ied Geochemistry, 4(5): 511-525.
[27]  Shin D and Lee I. 2003. Carbonate-hosted talc deposits in the contact aureole of an igneous intrusion (Hwanggangri mineralized zone, South Korea): Geochemistry, phase relationships, and stable isotope studies[J]. Ore Geology Reviews, 22(1-2): 17-39.
[28]  Slack J F, Shaw D R, Leitch C and Turner R. 2000. Tourmalinites and coticules fr om the Sullivan Pb-Zn-Ag deposit and vicinity, British Columbia: Geology, geoche mistry, and genesis[C]. Geological environment of the Sullivan deposit, Britis h Columbia: Geological Association of Canada Mineral Deposits Division Special Pub licat

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133