全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2012 

湖南东坡柴山-蛇形坪一带铅锌矿床流体包裹体研究

Keywords: 地球化学,流体包裹体,沸腾,岩浆热液,铅锌矿床,柴山-蛇形坪,东坡

Full-Text   Cite this paper   Add to My Lib

Abstract:

东坡柴山-蛇形坪一带铅锌矿床位于千里山岩体西南侧的远接触带上,由脉状、柱状和席状的铅锌矿体组成,在矿体周围明显发生碳酸盐化和硅化作用。该带矿床中闪锌矿、萤石、石英和方解石内流体包裹体类型主要包括富液相包裹体、富气相包裹体和含子矿物包裹体;其流体包裹体的均一温度范围为140~395℃,在350℃、240~260℃和200~220℃处分别出现峰值,反映该期热液流体在形成脉状、柱状铅锌矿体过程中可能包含了不同的捕获事件,其中方解石内出现的气体包裹体同与其共生的液体包裹体的均一温度相近,两者均一温度范围主要集中在268~395℃,峰值为350℃,液相包裹体w(NaCleq)范围为9%~11%,表明流体发生过气液相分离的沸腾作用;闪锌矿、萤石、石英和方解石中流体包裹体w(NaCleq)范围为0~23%,峰值9%~10%。流体包裹体的均一温度和盐度特征与岩浆热液流体演化到裂隙阶段静水压力条件下的流体相近。闪锌矿中流体包裹体内存在方解石和白云石子矿物,表明铅锌矿的成矿作用发生在富集碳酸盐的热液流体中。千里山花岗岩体晚期释放的流体沿着不同的通道上升,当它冷却到低于400℃,这些地区产生了脆性裂隙,流体沿着裂隙继续上升,并且发生沸腾作用,因此,温度在340~400℃时,w(NaCleq)为7%左右的流体分成了w(NaCleq)约10%的液相流体和w(NaCleq)约0.02%的气相流体,由于温度和压力的迅速降低,成矿物质沿着裂隙和空洞沉淀成矿,形成了东坡矿区的脉状、柱状和席状的铅锌矿体。

References

[1]  蔡新华,张怡军,徐惠长,潭若发. 2006. 柿竹园钨锡钼铋多金属矿深边部铅锌找矿潜力分析[J]. 地质与勘查, 2006. 42(2): 29-32.
[2]  陈骏, Halls C, Stanley C J. 1994. 柿竹园矽卡岩型钨锡钼铋矿床主要造岩矿物中REE的分布特征及成岩意义[J]. 地球化学, 23 (增刊): 84-92.
[3]  刘悟辉, 徐文(火斤), 戴塔根, 李蘅. 2006. 湖南柿竹园钨锡多金属矿田野鸡尾矿床同位素地球化学研究[J]. 岩石学报, 22(10): 2517-2524.
[4]  卢焕章. 2000. 高盐度、高温和高成矿金属的岩浆成矿流体——以格拉斯伯格Cu-Au矿为例[J]. 岩石学报, 16(4): 465-472.
[5]  卢焕章, 范宏瑞, 倪培, 欧光习, 沈昆, 张文淮. 2004. 流体包裹体[M]. 北京: 科学出版社. 208页.
[6]  毛景文, 李红艳, 王平安, Guy B, Perrin M, Raimbault L. 1994. 湖南柿竹园钨多金属矿床中的锰质矽卡岩[J]. 矿床地质, 13(1): 38-47.
[7]  毛景文, 李红艳, Guy B,Raimbault L. 1996. 湖南柿竹园矽卡岩-云英岩型W-Sn-Mo-Bi矿床地质和成矿作用[J]. 矿床地质, 15(1): 1-14.
[8]  毛景文. 1997. 超大型钨多金属矿床成矿特殊性-以湖南柿竹园矿床为例[J]. 地质科学, 32(3): 351-363.
[9]  毛景文, 谢桂青, 郭春丽, 陈毓川. 2007. 南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J]. 岩石学报, 23(10): 2329-2338.
[10]  Baker T, Achterberg E V, Ryan C G and Lang J R. 2004. Composition and ev olution of ore fluids in a magmatic-hydrothermal skarn deposit[J]. Geology, 32(2): 117-120.
[11]  Brock K J. 1972. Genesis of Garnet Hill skarn, Calaveras County, California[J]. Geological Society of America Bulletin, 83: 3391-3404.
[12]  Bussell M A, Alpers C N, Petersen U, Shepherd T J, Bermudez C and Baxter A N. 19 90. The Ag-Mn-Pb-Zn vein, replacement, and skarn deposits of Uchucchacua, Peru: Studies of structure, minera-logy, metal zoning, Sr isotopes, and fluid inclus ions[J]. Econ. Geol., 85: 1348-1383.
[13]  Fournier R O. 1987. Conceptual models of brine evolution in magmatic-hydrotherma l systems[R]. U.S. Geological Survey Professional Paper, 1487-1506.
[14]  Fournier R O. 1999. Hydrothermal processes related to movement of fluid from pla stic into brittle rock in the magmatic-epithermal environment[J]. Econ. Geol., 94: 1193-1211.
[15]  毛景文, 陈懋弘, 袁顺达, 郭春丽. 2011. 华南地区钦杭成矿带地质特征和矿床时空分布规律[J]. 地质学报, 85(5): 636-658.
[16]  饶家荣, 王纪恒, 曹一中. 1993. 湖南深部构造[J]. 湖南地质, 12: 351-362.
[17]  王昌烈, 罗仁徽, 胥友志, 孙一虹, 谢慈国, 张重铭, 徐文光, 任湘眉. 1987. 柿竹园钨多金属矿床地质[M]. 北京: 地质出版社. 29-48.
[18]  徐培苍, 李如璧, 王永强, 王志海, 李月琴. 1996. 地学中的拉曼光谱[M]. 陕西: 陕西科学技术出版社. 102页.
[19]  杨昌明. 1986. 蛇形坪铅锌矿成因初探[J]. 地质与勘探, 12: 19-27.
[20]  张怡军. 1998. 郴州枞树板大型铅锌银矿床成矿规律讨论[J]. 湖南地质, 17(2): 113-11 8.
[21]  更多...
[22]  Gunnesch K A, Angel C T D, Castro C C and Saez J. 1994. The Cu-(Au) skarn and Ag-Pb-Zn vein deposits of La Paz, northeastern Mexico: Mineralogical paragenetic, and fluid inclusion characteristics[J]. Econ. Geol., 89: 1640-1650.
[23]  Guy B. 1993. Banded skarns, example of geochemical dissipative structure[J/OL]. In Hal-00523251, 1-20.
[24]  Jiang Y H, Jiang S Y, Zhao K D and Ling H F. 2006. Petrogenesis of Late Jurassic Qianlishan granites and mafic dykes, Southeast China: Implications for a back-a rc extension setting[J]. Geological Magazine, 143(4): 457-474.
[25]  Li X H, Liu D Y, Sun M, Li W X, Liang X R and Liu Y. 2004. Precise Sm-Nd and U-P b isotopic dating of the supergiant Shizhuyuan polymetallic deposit and its host granite, SE China[J]. Geological Magazine, 141(2): 225-231.
[26]  Lu C S, Reed M H and Misra K C. 1992. Zinc-lead skarn mineralization at Tin Cree k, Alaska: Fluid inclusions and skarn-forming reactions[J]. Geochim. Cosmochim. Acta, 56(1): 109-119.
[27]  Lu H Z, Liu Y M, Wang C L, Xu Y Z and Li H Q. 2003. Mineralization and fluid inc lusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China [J]. Econ. Geol., 98: 955-974.
[28]  Mao J W and Li H Y. 1995. Evolution of the Qianlishan granite stock and its rela tion to the Shizhuyuan polymetallic tungsten deposit[J]. International Geology Review, 37(1): 63-80.
[29]  Megaw P K M, Ruiz J and Titley S R. 1988. High-temperature, carbonate-hosted Ag-Pb-Zn (Cu) deposits of northern Mexico[J]. Econ. Geol., 83: 1856-1885.
[30]  Megaw P K M. 1998. Carbonate-hosted Pb-Zn-Ag-Cu-Au replacement deposits: An expl oration perspective[A]. In: lentz D R, ed. Mineralized intrusion-related s karn syst ems[C]. Mineralogical Association of Canada Short Course Notes, 26: 337-357.
[31]  Meinert L D. 1987. Skarn zonation and fluid evolution in the Groundhog Mine, Cen tral mining district, New Mexico[J]. Econ. Geol., 82: 523-545.
[32]  Meinert L D, Hefton K K, Mayes D and Tasiran I. 1997. Geology, zonation, and flu id evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg District, Irian Jay a[J]. Econ. Geol., 92: 509-534.
[33]  Meinert L D, Hedenquist J W, Satoh H and Matsuhisa Y. 2003. Formation of anhydro us and hydrous skarn in Cu-Au ore deposits by magmatic fluids[J]. Econ. Geol., 98: 147-156.
[34]  Samson I M, Williams-Jones A E, Ault K M, Gagnon J E and Fryer B J. 2008. Source of fluids forming distal Zn-Pb-Ag skarns: Evidence from laser ablation-inductiv ely coupled plasma-mass spectrometry analysis of fluid inclusions from El Mochit o, Honduras[J]. Geology, 36(12): 947-950.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133