全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2012 

关于花岗岩与成矿作用若干基本概念的再认识

Keywords: 地质学,花岗岩,岩浆演化,成矿作用,岩浆-热液过渡阶段,含矿岩体

Full-Text   Cite this paper   Add to My Lib

Abstract:

借着对张旗先生两篇文章提出进一步质疑的机会,文章阐述了与花岗岩有关成矿作用的若干基本概念、基础知识以及国内外矿床学界对某些相关问题的研究成果。认为花岗岩浆从形成起到最后固结成岩,必然经历了一定的演化过程,花岗岩浆的分异演化,可以形成富含水和其他挥发组分的残余岩浆,出现晶体、熔体、流体三相共存的"岩浆-热液过渡阶段",并最终分泌出热液(岩浆水)。中国华南尤其是南岭地区钨锡铋钼锂铍铌钽等稀有金属的大规模成矿作用正是与该地区大规模花岗岩浆活动及其演化密切相关的。文章强调了花岗岩类与钨锡等成矿作用之间存在着密切的成因关系,并重申了"成矿母岩"、"含矿岩体"等术语在矿床学研究及指导找矿勘查等方面的积极意义。指出"金铜和钨锡可以伴生"是大量矿床所反映的、因此也是必须尊重的基本地质事实,而不是依据了什么理论。文章最后认为,关于成矿作用问题的任何讨论和争鸣都必须建立在尊重地质事实、尊重矿床学基本概念和尊重矿床学领域前人研究成果的基础之上。

References

[1]  地球科学大辞典编委会.2005.地球科学大辞典(应用科学卷)[M].北京:地质出版社. 8.
[2]  地球科学大辞典编委会.2006.地球科学大辞典(基础科学卷)[M].北京:地质出版社. 440, 448.
[3]  贵阳地球化学研究所.1979.华南花岗岩类的地球化学[M].北京:科学出版社. 1-421.
[4]  华仁民.2005.南岭中生代陆壳重熔型花岗岩类成岩-成矿的时间差及其地质意义[J].地质论评,51(6):633-639.
[5]  黄崇轲,朱裕生,张忠伟,孙纯成,杨兆萍.1997.南岭银矿[M].北京:地质出版社. 57.
[6]  李福春,朱金韧,饶 冰,王年生.2000.富氟花岗岩中萤石岩浆成因的新证据[J].矿物学报,20(3):224-227.
[7]  李福春,朱金初,张林松,饶 冰,张佩华.2004.富氟花岗质熔体形成和演化的实验研究[J].岩石学报,19(1):125-130.
[8]  卢焕章.1986.华南钨矿成因[M].重庆:重庆出版社. 211-212.
[9]  卢焕章. 1997. 成矿流体[M]. 北京: 北京科学技术出版社. 1-210.
[10]  卢欣祥,祝朝辉,谷德敏,张画眠,吴 梅,吴 艳.2010.东秦岭花岗伟晶岩的基本地质矿化特征[J].地质论评,56(1):21-30.
[11]  毛景文,李红艳,宋学信,芮 柏,胥友志,王登红,蓝晓明,张景凯.1998.湖南柿竹园钨锡钼铋多金属矿床地质与地球化学[M].北京:地质出版社. 1-215.
[12]  莫柱孙,叶伯丹.1980.南岭花岗岩地质学[M].北京:地质出版社. 172-178.
[13]  南京大学地质学系.1981.华南不同时代花岗岩及其成矿关系[M].北京:科学出版社. 1-395.
[14]  更多...
[15]  牛贺才,单 强,陈培荣.1997.岩浆-热液过渡阶段流体性质的研究——以四川冕宁矿床为例[J].南京大学学报,33卷,地质流体专辑:21-27.
[16]  任启江,胡志宏,严正富,叶 俊,孙明志.1993.矿床学概论[M].南京:南京大学出版社. 5.
[17]  芮宗瑶,张洪涛,陈仁义,王志良,王龙生,王义天.2006.斑岩铜矿研究中若干问题探讨[J].矿床地质,25:491-500
[18]  孙 鼐,周金城,刘昌实,陈克荣,曾家湖.1983.浙江桐庐火山侵入杂岩的地球化学特征[J].地球化学,4:329-337
[19]  涂光炽, 等.2000.中国超大型矿床(Ⅰ)[M].北京:科学出版社. 41-42.
[20]  王登红.2011.关于矿床学研究方法的一点看法——就"埃达克岩"与成矿的关系问题与张旗先生商榷[J].矿床地质,30(1):171-175.
[21]  王联魁,黄智龙.2000.Li-F花岗岩液态分离和实验[M].北京:科学出版社. 1-280.
[22]  吴永乐,梅勇文,刘鹏程,蔡常良,卢同衍.1987.西华山钨矿地质[M].北京:地质出版社. 1-317.
[23]  肖庆辉,邓晋福,马大铨, 等.2002.花岗岩研究思维与方法[M].北京:地质出版社: 71-78.
[24]  Parat F and Bucher K. 2009. Topaz-fluorite granites from the Black Forest, Germany; Evolution of F-rich felsic magmas[J]. Geochimica et Cosmochimica Acta, 73 (13S): A992.
[25]  Pichavant M and Manning D. 1984. Petrogenesis of tourmaline granites and topaz granites: The contribution of experimental data[J]. Physics of the Earth and Planetary Interiors, 35: 1-5.
[26]  Rickers K, Thomas R and Heinrich W. 2006. The behavior of trace elements during the chemical evolution of the H2O-, B-, and F-rich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf, Germany: A SXRF study of melt and fluid inclusions[J]. Mineralium Deposita, 41(3): 229-245.
[27]  Spera F J, Bohrson W A, Till C B and Ghiorso M S. 2007. Partitioning of trace elements among coexisting crystals, melt, and supercritical fluid during isobaric crystallization and melting[J]. American Mineralogist, 92: 1881-1898.
[28]  Sirbescu M C and Nabelek P I. 2003. Crustal melts below 400℃[J]. Geology, 31(8): 685-688.
[29]  Thomas R, Webster J D and Heinrich W. 2000. Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure[J]. Contributions to Mineralogy and Petrology, 139: 394-401.
[30]  Thomas R, Foerster H J, Rickers K and Webster J D. 2005. Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: A melt-fluid-inclusion study[J]. Contributions to Mineralogy and Petrology, 148: 582-601.
[31]  Veksler I V. 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: A summary of experimental studies[J]. Chem. Geol., 210:7-31.
[32]  Ward C D, McArthur J M and Walsh J N. 1992. Rare earth element behavior during evolution and alteration of the Dartmoor Granite, SW England[J]. Journal of Petrology, 33(4):785-815.
[33]  地矿部南岭项目花岗岩专题组.1989.南岭花岗岩地质及其成岩和成矿作用[M].北京:地质出版社. 1-471.
[34]  Webster J D, Thomas R, Rhede D, Forster H J and Seltmamn R. 1997. Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in F-rich and P-rich residual liquids[J]. Geochimica et Cosmochimica Acta, 61: 2589-2604.
[35]  White D E. 1974. Diverse origins of hydrothermal ore fluids[J]. Econ. Geol., 69: 954-973.
[36]  Whitney J A, 1988. The origin of granite: The role and source of water in the evolution of granitic magmas[J]. GSA
[37]  常海亮,黄惠兰.1998.尖峰岭似伟晶岩内黄玉中的熔流包裹体[J].岩石矿物学杂志,17(1):81-86.
[38]  常海亮,黄惠兰.2001.西华山黑钨矿石英脉绿柱石中熔融包裹体的发现及其意义[J].华南地质与矿产,2:21-27.
[39]  陈 骏,陆建军,陈卫锋,王汝成,马东升,朱金初,张文兰,季峻峰.2008.南岭地区钨锡铌钽花岗岩及其成矿作用[J].高校地质学报,14(4):459-473.
[40]  陈毓川,裴荣富,张宏良,等.1989.南岭地区与中生代花岗岩类有关的有色及稀有金属矿床地质[M].北京:地质出版社,1-508.
[41]  陈毓川,毛景文等.1995.桂北地区矿床成矿系列和成矿历史演化轨迹[J].南宁:广西科学技术出版社. 1-394.
[42]  华仁民.2011.关于花岗岩成因分类与花岗岩成矿作用若干基本问题的思考——与张旗先生等商榷[J].矿床地质,30(1):163-170.
[43]  熊小林,朱金初,饶 冰.1996.黄玉云英岩成因的初步实验研究[J].科学通报,41(10):917-919.
[44]  徐克勤,孙 鼐,王德滋,胡受奚.1963.华南多旋回花岗岩类的侵入时代、岩性特征、分布规律及其成矿专属性的探讨[J].地质学报,42(1-2):1-26, 141-155.
[45]  徐克勤,胡受奚,俞受(均金).1964.矿床学[M].北京:人民教育出版社. 25.
[46]  徐克勤,涂光炽.1984a.花岗岩地质与成矿关系[M].南京:江苏科学技术出版社. 1-657.
[47]  徐克勤,孙 鼐,王德滋,胡受奚,刘英俊,季寿元.1984b.华南花岗岩成因与成矿[A].见: 徐克勤, 涂光炽, 主编.花岗岩地质与成矿关系[M].南京:江苏科学技术出版社. 1-20.
[48]  徐夕生,邱检生(主编).2010.火成岩岩石学[M].北京:科学出版社. 16-17.
[49]  姚凤良,孙丰月.2006.矿床学教程[M].北京:地质出版社. 16.
[50]  翟裕生,林新多,周宗桂,赵永鑫,章传玲,张德会,赵彦明.1985.花岗岩体构造-化学特征与钨锡成矿作用[J].地球科学——武汉地质学院学报,10(4):11-20.
[51]  张德会,张文淮,许国建.2004.富F熔体-溶液体系流体地球化学及其成矿效应[J].地学前缘,11(2):479-490.
[52]  张 旗,王元龙,张福勤,王 强,王 焰.2002.埃达克岩与斑岩铜矿[J].华南地质与矿产,(3):85-90.
[53]  张 旗,秦克章,王元龙,张福勤,刘红涛,王 焰.2004a.加强埃达克岩研究,开创中国Cu、Au等找矿工作的新局面[J].岩石学报,20:195-204.
[54]  张 旗,秦克章,许继峰,王 焰,刘红涛,王元龙.2004b.中国与埃达克质岩有关的矿床分布、找矿方向和找矿方法刍议[J].华南地质与矿产,(2):1-8.
[55]  张 旗,金惟俊,王 焰,李承东,王元龙.2010.花岗岩与金铜及钨锡成矿的关系[J].矿床地质,29(5):729-759
[56]  张 旗.2011.再论花岗岩的分类及其与金铜钨锡成矿的关系[J].矿床地质,30(3):557-570.
[57]  朱金初.1997.硅铝质熔浆体系中的水质流体[J].南京大学学报,33(地质流体专辑):11-20.
[58]  朱金初,吴长年,刘昌实,李福春,黄小龙,周东山.2000.新疆阿尔泰可可托海3号伟晶岩脉岩浆-热液演化和成因[J].高校地质学报,6(1):40-52.
[59]  朱金初,饶 冰,熊小林,李福春,张佩华.2002.富锂氟含稀有矿化花岗质岩石的对比和成因思考[J].地球化学,31(2):141-152.
[60]  朱金初,王汝成,陆建军,张 辉,张文兰,谢 磊,章荣清.2011.湘南癞子岭花岗岩体分异演化和成岩成矿[J].高校地质学报,17(3):381-392.
[61]  Antipin V S, Goreglyad A V, Savina E A and Mitichkin M A. 1997. Evolution of Li-F-granites with the formation of rare-metal mica schlieren, Bezymyansky Massif, Prebaikalia[J]. Russian Geology and Geophysics, 38(7): 1251-1263.
[62]  Audetat A, Guenther D and Heinrich C A. 2000. Magmatic-hydrothermal evolution in a fractionating granite: A microchemical study of the Sn-W-F-mineralized Mole Granite (Australia)[J]. Geochimica et Cosmochimica Acta, 64(19): 3373-3393.
[63]  Bach W, Alt J C and Humphris S E. 2001. A geochemical and isotopic study of the magmatic-hydrothermal transition in the lower oceanic crust (ODP Hole 735B) [J]. GSA Abstracts with Programs, 33(6): 331.
[64]  Balen D and Broska I. 2011. Tourmaline nodules: Products of devolatilization within the final evolutionary stage of granitic melt(in Granite-related ore deposits) [J]? Geological Society Special Publications, 350: 53-68.
[65]  Blevin P L and Chappell B W. 1995. Chemistry, origin, and evolution of mineralized granites in the Lachlan Fold Belt, Australia; The metallogeny of I- and S -type granites[J]. Econ. Geol., 90: 1604-1619.
[66]  Breiter K, Skoda R and Uher P. 2007. Nb-Ta-Ti-W-Sn-oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution; Podlesi, Czech Republic[J]. Mineralogy and Petrology, 91(3-4): 225-248.
[67]  Bureau, H and Keppler, H. 1999. Complete miscibility between silicate melts and hydrous fluids in the upper mantle: Experimental evidence and geochemical implications[J]. Earth and Planetary Science Letters, 165(2): 187-196.
[68]  Burnham C W. 1979. Magmas and hydrothermal fluids[A]. In: Barnes H L, ed. Geochemistry of hydrothermal ore deposits[M]. 2nd edition. New York: John Wiley & Sons. 71-36.
[69]  Burnham C W and Davis N F. 1971. The role of H2O in silicate melts; I, P-V-T relations in the system NaAlSi3O8 -H2O to 10 kilobars and 1000 degrees C[J]. American Journal of Science, 270(1): 54-79.
[70]  Burnham C W. 1994. Development of the Burnham model for prediction of H2O solubility in magmas[J]. Reviews in Mineralogy and Geochemistry, 30: 123-129.
[71]  Campbell I H and Taylor S R. 1983. No water, no granites; no oceans, no continents[J]. Geophysical Research Letters, 10(11): 1061-1064.
[72]  Charoy B. 1999. Beryllium speciation in evolved granite magma: Phosphates versus silicates[J]. European Journal of Mineralogy, 11: 135-148.
[73]  Claudia Cannatelli L, Fedele F J Spera and Benedetto De Vivo. 2009. Understanding magma evolution at Campi Flegrei (Italy) using melt inclusions data and thermodynamic modeling[J]. Proceedings of the ECROFI, 20: 49-50.
[74]  Davidson P and Kamenetsky V S. 2001. Immiscibility and continuous felsic melt-fluid evolution within the Rio Blanco porphyry system, Chile: Evidence from inclusions in magmatic quartz[J]. Econ. Geol., 96: 1921-1929.
[75]  Dingwell D B and Mysen B O. 1985. The effect of water and fluorine on the viscosity of albite melt at high pressure: A preliminary investigation[J]. Earth Planet. Sci. Lett., 74: 266-274.
[76]  Hack A C, Thompson A B and Aerts M. 2007. Phase relations involving hydrous silicate melts, aqueous fluids, and minerals[J]. Reviews in Mineralogy & Geochemistry, 65: 129-185.
[77]  Hezel D C, Kalt A, Marschall H R, Ludwig T and Meyer H P. 2011. Major-element and Li, Be compositional evolution of tourmaline in an S-type granite-pegmatite system and its country rocks: an example from Ikaria, Aegean Sea, Greece[J]. The Canadian Mineralogists, 49: 321-340.
[78]  Huang W L and Wyllie P J. 1973. Muscovite dehydration and melting in deep crust and subducted oceanic sediments[J]. Earth Planet. Sci. Lett., 18 (1): 133-136.
[79]  Jahns R H and Burnham C W. 1969. Experimental studies of peg Bulletin, 100: 1886-1897.
[80]  Xie Y L, Hou Z Q, Yin S P, Simon C D, Xu J H, Tian S H and Xu W Y. 2009. Continuous carbonatitic melt-fluid evolution of a REE mineralization system: Evidence from inclusions in the Maoniuping REE Deposit, Western Sichuan, China[J]. Ore Geology Reviews, 36(1-3): 90-105.ydrothermal transition in the Omsukchan Granite (NE Russia) [J]. Chemical Geology, 210: 73-90.
[81]  Kennedy G C. 1961. Phase relations of some rocks and minerals at high temperatures and high pressures[J]. Advances in Geophysics, 7: 303-322.
[82]  Layman A J and Anderson A J. 2006. Preliminary investigation of Nb in melt-fluid systems using in situ X-ray spectroscopy[J]. Atlantic Geology, 42(1): 94-95.
[83]  Li X H, Li W X and Li Z X. 2007. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China[J]. Chinese Science Bulletin, 52(14): 1873-1885.
[84]  London D. 1986. Magmatic-hydrothermal transition in the Tanco rare elements pegmatite: evidence from fluid inclusions and phase equilibrium experiments[J]. American Mineralogists, 71(3-4): 376-395.
[85]  Luth W C. 1967. Studies in the system KAlSiO4-Mg2SiO4-SiO2-H2O; [Part] 1, Inferred phase relations and petrologic applications[J]. Journal of Petrology, 8(3):372-416.
[86]  Manning D. 1981. The effect of fluorine on liquidus phase relationship in the system Qz-Ab-Or with excess water at 1 kbar[J]. Contribution of Petrology, 76: 206-215.
[87]  Mueller A, van den Kerkhof, Behr H-J, Kronz A and Koch-Mueller. 2010. The evolution of late-Hercynian granites and rhyolites documented by quartz: A review[J]. GSA Special Paper, 472: 185-204.
[88]  Niggli P. 1912. Die gasmineralisatoren im magma[J]. Z. Anorg. Chem., 75: 161-188.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133