Parat F and Bucher K. 2009. Topaz-fluorite granites from the Black Forest, Germany; Evolution of F-rich felsic magmas[J]. Geochimica et Cosmochimica Acta, 73 (13S): A992.
[25]
Pichavant M and Manning D. 1984. Petrogenesis of tourmaline granites and topaz granites: The contribution of experimental data[J]. Physics of the Earth and Planetary Interiors, 35: 1-5.
[26]
Rickers K, Thomas R and Heinrich W. 2006. The behavior of trace elements during the chemical evolution of the H2O-, B-, and F-rich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf, Germany: A SXRF study of melt and fluid inclusions[J]. Mineralium Deposita, 41(3): 229-245.
[27]
Spera F J, Bohrson W A, Till C B and Ghiorso M S. 2007. Partitioning of trace elements among coexisting crystals, melt, and supercritical fluid during isobaric crystallization and melting[J]. American Mineralogist, 92: 1881-1898.
[28]
Sirbescu M C and Nabelek P I. 2003. Crustal melts below 400℃[J]. Geology, 31(8): 685-688.
[29]
Thomas R, Webster J D and Heinrich W. 2000. Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure[J]. Contributions to Mineralogy and Petrology, 139: 394-401.
[30]
Thomas R, Foerster H J, Rickers K and Webster J D. 2005. Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: A melt-fluid-inclusion study[J]. Contributions to Mineralogy and Petrology, 148: 582-601.
[31]
Veksler I V. 2004. Liquid immiscibility and its role at the magmatic-hydrothermal transition: A summary of experimental studies[J]. Chem. Geol., 210:7-31.
[32]
Ward C D, McArthur J M and Walsh J N. 1992. Rare earth element behavior during evolution and alteration of the Dartmoor Granite, SW England[J]. Journal of Petrology, 33(4):785-815.
Webster J D, Thomas R, Rhede D, Forster H J and Seltmamn R. 1997. Melt inclusions in quartz from an evolved peraluminous pegmatite: geochemical evidence for strong tin enrichment in F-rich and P-rich residual liquids[J]. Geochimica et Cosmochimica Acta, 61: 2589-2604.
[35]
White D E. 1974. Diverse origins of hydrothermal ore fluids[J]. Econ. Geol., 69: 954-973.
[36]
Whitney J A, 1988. The origin of granite: The role and source of water in the evolution of granitic magmas[J]. GSA
Antipin V S, Goreglyad A V, Savina E A and Mitichkin M A. 1997. Evolution of Li-F-granites with the formation of rare-metal mica schlieren, Bezymyansky Massif, Prebaikalia[J]. Russian Geology and Geophysics, 38(7): 1251-1263.
[62]
Audetat A, Guenther D and Heinrich C A. 2000. Magmatic-hydrothermal evolution in a fractionating granite: A microchemical study of the Sn-W-F-mineralized Mole Granite (Australia)[J]. Geochimica et Cosmochimica Acta, 64(19): 3373-3393.
[63]
Bach W, Alt J C and Humphris S E. 2001. A geochemical and isotopic study of the magmatic-hydrothermal transition in the lower oceanic crust (ODP Hole 735B) [J]. GSA Abstracts with Programs, 33(6): 331.
[64]
Balen D and Broska I. 2011. Tourmaline nodules: Products of devolatilization within the final evolutionary stage of granitic melt(in Granite-related ore deposits) [J]? Geological Society Special Publications, 350: 53-68.
[65]
Blevin P L and Chappell B W. 1995. Chemistry, origin, and evolution of mineralized granites in the Lachlan Fold Belt, Australia; The metallogeny of I- and S -type granites[J]. Econ. Geol., 90: 1604-1619.
[66]
Breiter K, Skoda R and Uher P. 2007. Nb-Ta-Ti-W-Sn-oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution; Podlesi, Czech Republic[J]. Mineralogy and Petrology, 91(3-4): 225-248.
[67]
Bureau, H and Keppler, H. 1999. Complete miscibility between silicate melts and hydrous fluids in the upper mantle: Experimental evidence and geochemical implications[J]. Earth and Planetary Science Letters, 165(2): 187-196.
[68]
Burnham C W. 1979. Magmas and hydrothermal fluids[A]. In: Barnes H L, ed. Geochemistry of hydrothermal ore deposits[M]. 2nd edition. New York: John Wiley & Sons. 71-36.
[69]
Burnham C W and Davis N F. 1971. The role of H2O in silicate melts; I, P-V-T relations in the system NaAlSi3O8 -H2O to 10 kilobars and 1000 degrees C[J]. American Journal of Science, 270(1): 54-79.
[70]
Burnham C W. 1994. Development of the Burnham model for prediction of H2O solubility in magmas[J]. Reviews in Mineralogy and Geochemistry, 30: 123-129.
[71]
Campbell I H and Taylor S R. 1983. No water, no granites; no oceans, no continents[J]. Geophysical Research Letters, 10(11): 1061-1064.
[72]
Charoy B. 1999. Beryllium speciation in evolved granite magma: Phosphates versus silicates[J]. European Journal of Mineralogy, 11: 135-148.
[73]
Claudia Cannatelli L, Fedele F J Spera and Benedetto De Vivo. 2009. Understanding magma evolution at Campi Flegrei (Italy) using melt inclusions data and thermodynamic modeling[J]. Proceedings of the ECROFI, 20: 49-50.
[74]
Davidson P and Kamenetsky V S. 2001. Immiscibility and continuous felsic melt-fluid evolution within the Rio Blanco porphyry system, Chile: Evidence from inclusions in magmatic quartz[J]. Econ. Geol., 96: 1921-1929.
[75]
Dingwell D B and Mysen B O. 1985. The effect of water and fluorine on the viscosity of albite melt at high pressure: A preliminary investigation[J]. Earth Planet. Sci. Lett., 74: 266-274.
[76]
Hack A C, Thompson A B and Aerts M. 2007. Phase relations involving hydrous silicate melts, aqueous fluids, and minerals[J]. Reviews in Mineralogy & Geochemistry, 65: 129-185.
[77]
Hezel D C, Kalt A, Marschall H R, Ludwig T and Meyer H P. 2011. Major-element and Li, Be compositional evolution of tourmaline in an S-type granite-pegmatite system and its country rocks: an example from Ikaria, Aegean Sea, Greece[J]. The Canadian Mineralogists, 49: 321-340.
[78]
Huang W L and Wyllie P J. 1973. Muscovite dehydration and melting in deep crust and subducted oceanic sediments[J]. Earth Planet. Sci. Lett., 18 (1): 133-136.
[79]
Jahns R H and Burnham C W. 1969. Experimental studies of peg Bulletin, 100: 1886-1897.
[80]
Xie Y L, Hou Z Q, Yin S P, Simon C D, Xu J H, Tian S H and Xu W Y. 2009. Continuous carbonatitic melt-fluid evolution of a REE mineralization system: Evidence from inclusions in the Maoniuping REE Deposit, Western Sichuan, China[J]. Ore Geology Reviews, 36(1-3): 90-105.ydrothermal transition in the Omsukchan Granite (NE Russia) [J]. Chemical Geology, 210: 73-90.
[81]
Kennedy G C. 1961. Phase relations of some rocks and minerals at high temperatures and high pressures[J]. Advances in Geophysics, 7: 303-322.
[82]
Layman A J and Anderson A J. 2006. Preliminary investigation of Nb in melt-fluid systems using in situ X-ray spectroscopy[J]. Atlantic Geology, 42(1): 94-95.
[83]
Li X H, Li W X and Li Z X. 2007. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China[J]. Chinese Science Bulletin, 52(14): 1873-1885.
[84]
London D. 1986. Magmatic-hydrothermal transition in the Tanco rare elements pegmatite: evidence from fluid inclusions and phase equilibrium experiments[J]. American Mineralogists, 71(3-4): 376-395.
[85]
Luth W C. 1967. Studies in the system KAlSiO4-Mg2SiO4-SiO2-H2O; [Part] 1, Inferred phase relations and petrologic applications[J]. Journal of Petrology, 8(3):372-416.
[86]
Manning D. 1981. The effect of fluorine on liquidus phase relationship in the system Qz-Ab-Or with excess water at 1 kbar[J]. Contribution of Petrology, 76: 206-215.
[87]
Mueller A, van den Kerkhof, Behr H-J, Kronz A and Koch-Mueller. 2010. The evolution of late-Hercynian granites and rhyolites documented by quartz: A review[J]. GSA Special Paper, 472: 185-204.
[88]
Niggli P. 1912. Die gasmineralisatoren im magma[J]. Z. Anorg. Chem., 75: 161-188.