全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2013 

安徽马头斑岩型钼铜矿床蚀变带常量元素迁移规律及其定量计算

Keywords: 地球化学,斑岩型钼铜矿床,常量元素,定量计算,迁移规律,矿化蚀变,带入带出,马头

Full-Text   Cite this paper   Add to My Lib

Abstract:

文章对安徽马头斑岩型钼铜矿床花岗闪长斑岩体和粉砂岩在矿化蚀变过程中常量元素的迁移规律进行了探讨。马头矿床元素质量迁移计算结果表明,在钼铜矿化蚀变过程中常量元素均发生不同程度的带入带出,迁移规律明显。在花岗闪长斑岩中,从钾化带、绢英岩化带到青磐岩化带,均为带入的常量元素有K2O、CaO、SiO2、H2O+,而Na2O明显带出,说明矿化与去钠化、钾长石化等蚀变密切相关。在粉砂岩中,蚀变岩明显带出的有Na2O、CaO、MgO、Fe2O3、H2O+等,而且黄铁辉钼矿化粉砂岩在常量元素的迁移程度远比青磐岩化粉砂岩大。马头矿床成矿系统质量变化定量计算结果表明,花岗闪长斑岩和粉砂岩系统的质量变化整体上表现为净带入与净带出,且净带出量大于净带入量,因此马头矿床成矿系统总体上是净带出的,即马头矿床钼铜矿化产出在元素总体负异常体系中。该项研究成果为揭示矿化蚀变过程中元素的作用机制提供了线索,并且可能成为深部成矿潜力定量评价的有效途径之一。

References

[1]  艾金彪, 马生明, 朱立新, 樊连杰, 胡兆鑫, 席明杰. 2013. 长江中下游马头斑岩型钼铜矿床常量元素、稀土元素特征及迁移规律[J]. 地质学报, 87(5): 691-702.
[2]  常印佛, 刘相培, 吴言昌. 1991. 长江中下游铜铁成矿带[M]. 北京: 地质出版社. 1-89.
[3]  陈上达. 1987. 论安基山铜矿热液蚀变的地球化学过程[J]. 江苏地质, 3: 17-19.
[4]  邓海琳, 涂光炽, 李朝阳, 刘从强. 1999. 地球化学开放系统的质量平衡:1.理论[J]. 矿物学报, 19(2): 121-131.
[5]  董 胜. 2006. 安徽省贵池地区区域地球化学特征及找矿意义[J]. 物探与化探, 30(3): 215-223.
[6]  高尔根, 刘同庆, 贺传松. 2000. 安徽寻找大型、超大型铜金矿床的可能性研究[J]. 地质与勘探, 36(3): 5-7.
[7]  霍明宇. 2012. 安徽省池州市马头铜钼矿容矿构造特征及构造应力场研究(硕士论文)[D]. 导师: 张庆龙. 南京: 南京大学.
[8]  季克俭, 王立本. 1994. 热液源研究的重要进展和"三源"交代热液成矿学说[J]. 地学前缘, 1(3): 126-132.
[9]  李曙光. 2001. 长江中下游中生代岩浆岩及铜铁成矿带的深部构造背景[J]. 安徽地质, 11(2): 118-122.
[10]  李双保. 1994. 热液交代蚀变作用元素迁移定量研究方法在矿床、岩石研究中的应用[J]. 国外前寒武纪地质, 65(1): 33-43.
[11]  刘英俊, 曹励明, 李兆麟, 王鹤年, 储同庆, 孙景荣. 1984. 元素地球化学[M]. 北京:科学出版社. 1-548.
[12]  吕庆田. 2007. 我国东部深部找矿方向、找矿思路与勘查技术——以长江中下游成矿带为实例[A]. 中国地球物理学会第二十三届年会论文集[C]. 12-19.
[13]  任云生, 刘连登, 张辉煌, 黄景源. 2004. 安徽池州地区金鸡山金矿床成矿流体特征[J]. 吉林大学学报(地球科学版), 34(4): 522-526.
[14]  宋国学, 秦克章, 李光明. 2010. 长江中下游池州地区矽卡岩-斑岩型W-Mo矿床流体包裹体与H、O、S同位素研究[J]. 岩石学报, 26(9): 2768-2782.
[15]  唐永成, 邢凤鸣, 吴言昌, 王永敏, 常印佛, 储国正, 曹奋扬. 1998. 安徽沿江地区铜金多金属矿床地质[M]. 北京: 地质出版社. 1-351.
[16]  王 成, 龚庆杰, 席斌斌. 2009. 斑岩钼矿热液流体的地球化学演化——以美国亨德森斑岩钼矿为例[J]. 地质找矿论丛, 24(2): 146-151.
[17]  王翠云, 李晓峰, 肖 荣, 白艳萍, 杨 峰, 毛 伟, 蒋松坤. 2012. 德兴朱砂红斑岩铜矿热液蚀变作用及元素地球化学迁移规律[J]. 岩石学报, 28(12): 3869-3886.
[18]  王 睿, 李 霞, 董 成, 金晓玲, 刘 柯. 2010. 从江翁浪地区蚀变岩型金矿床常量元素及稀土元素迁移规律研究[J]. 矿床地质, 29(3): 489-500.
[19]  王伟华. 2012. 安徽池州马头钼(铜)矿床地质特征及成因研究(硕士论文)[D]. 导师: 徐兆文. 南京: 南京大学.
[20]  吴言昌, 曹奋扬, 常印佛. 1999. 初论安徽沿江地区成矿系统的深部构造-岩浆控制[J]. 地学前缘, 6(2): 285-296.
[21]  更多...
[22]  鄢明才, 迟清华. 1997. 中国东部地壳与岩石的化学组成[M]. 北京: 科学出版社. 73-100.
[23]  翟裕生, 姚书振, 林新多. 1992. 长江中下游地区铁铜(金)成矿规律[M]. 北京: 地质出版社. 1-11.
[24]  张遵忠,薛 虎,陈 雪,张 蕤,郭 佳. 2009. 安徽省池州市马头钼铜矿床地质地球化学及找矿方向研究[R]. 江苏省有色金属华东地质勘查局资源调查与评价研究院.
[25]  郑远川, 顾连兴, 汤晓茜, 吴昌志, 李春海, 刘四海. 2010. 辽宁红透山块状硫化物矿床蚀变带元素迁移特征及定量计算[J]. 矿床地质, 29(5): 785-809.
[26]  周涛发, 岳书仓. 2000. 长江中下游铜、金矿床成矿流体系统的形成条件及机理[J]. 北京大学学报(自然科学版), 36(5): 697-707.
[27]  周永章, 涂光炽, Chown E H, Guha J, 卢焕章. 1994. 热液围岩蚀变过程中数学不变量的寻找及元素迁移的定量估算——以广东河台金矿田为例[J]. 科学通报, 39(11): 1026-1028.
[28]  Ague J J. 2011. Extreme channelization of fluid and the problem of element mobility during Barrovian metamorphism[J]. American Mineralogist, 96: 333-352.
[29]  Brauhart C W, Huston D L, Groves D I, Mikucki E J and Gardoll A S. 2001. Geochemical mass-transfer patterns as indicators of the Architecture of a complete volcanic-hosted massive sulfide hydrothermal alteration system, Panorama district, Pilbara, Western Australia[J]. Econ. Geol., 96: 1263-1278.
[30]  Derakhshani R and Abdolzadeh M. 2009. Mass change calculation during hydrothermal alteration/mineralization in the porphyry copper deposit of Darrehzar, Iran[J]. Research Journal of Environmental Sciences, 3(1): 41-51.
[31]  Grant J A. 1986. The isocon diagram-a simple solution to Gresens equation for metasomatic alteration[J]. Econ. Geol., 81: 1976-1982.
[32]  Grant J A. 2005. Isocon analysis: A brief review of the method and applications[J]. Physics and Chemistry of the Earth, 30: 997-1004.
[33]  Gresens R L. 1967. Composition-volume relation ships of metasomatism[J]. Chemistry Geology, 2: 47-55.
[34]  MacLean W H and Kranidiotis P. 1987. Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposit, Matagami, Quebec[J]. Econ. Geol., 82:951-962.
[35]  MacLean W H, Bonavia F F and Sanna G. 1997. Argillite debris converted to bauxite during Karst weathering: Evidence from immobile element geochemistry at the Olmedo deposit, Sardinia[J]. Mine-ralium Deposita, 32: 607-616.
[36]  O\'Hara K. 1988. Fluid flow and volume loss during mylonitizion: An origin for phyllonite in an overthrust setting, North Caralia USA[J]. Tectonophysics, 156:21-36.
[37]  Riverin G and Hodgson C J. 1980. Wall-rock alteration at the Millenbach Cu-Zn mine, Noranda[J]. Econ. Geol., 75: 424-444.
[38]  Sinha A K, Hewitt D A and Rimstidt J D. 1986. Fluid interaction and element mobility in the development of ultramylonites[J]. Geology, 14: 883-886.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133