全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2013 

安徽庐江砖桥科学深钻内的铀钍赋存状态研究

Keywords: 地质学,SinoProbe,科学深钻,铀钍矿化,电子探针,庐枞盆地

Full-Text   Cite this paper   Add to My Lib

Abstract:

2012年深部探测项目SinoProbe-03-06在安徽省庐江县砖桥地区实施了2012m科学深钻,在钻孔深部正长岩中发现铀钍异常,局部已达工业边界品位。系统的岩芯观测、显微镜下研究以及电子探针分析揭示,铀钍的赋存状态主要有2种:一种呈铀钍的独立矿物如铀钛矿、铀钍石、晶质铀矿形式存在;另一种以类质同象形式赋存于锆石、磷灰石、金红石等副矿物中。独立铀钍矿物主要呈2种形式产出:一种呈自形赋存于钠长石中,常与锆石在空间上伴生;另一种主要呈微细颗粒散布于金红石、磷灰石、硬石膏等热液蚀变矿物中。与铀钍矿化相关的蚀变主要有钠长石化、电气石化、硬石膏化等高温热液蚀变。砖桥深钻距庐枞盆地南缘铀矿床(点)不远,且均与正长岩有关,虽然两者的铀钍矿化、铀钍比值、赋存状态、蚀变矿化等一系列特征均存在差异,但两者之间可能存在成因联系,科学深钻所揭示出的铀钍矿化可能代表了铀钍在盆地深部岩体中的高温成矿样式。

References

[1]  曹达旺,向 铭. 2012. 安徽庐枞地区富铀矿成矿特征及形成环境浅析[J]. 矿产勘查, 3(2): 171-175.
[2]  常印佛,刘湘培,吴言昌. 1991. 长江中下游铜铁成矿带[M]. 北京: 地质出版社. 1-56
[3]  陈时亮,吕 达,黄昕霞. 2012. 庐枞盆地南缘黄马青组中含铀砂岩的发现及其意义[J]. 安徽地质,22(3):176-177.
[4]  陈一峰. 1994. 庐枞地区铀成矿规律探讨[J]. 铀矿地质,10(4):193-202.
[5]  陈一峰,马昌明,樊焕新. 1996. 庐枞地区铀成矿的区域地质背景研究[J]. 铀矿地质,12(2):75-82.
[6]  杜乐天,王玉明. 1984. 华南花岗岩型、火山岩型、碳硅泥岩型、砂岩型铀矿成矿机理的统一性[J]. 放射性地质,(3):1-10.
[7]  杜乐天. 2002. 碱交代岩研究的重大成因意义[J]. 矿床地质, 21(增刊):953-958.
[8]  杜乐天. 2011. 中国热液铀矿成矿理论体系[J]. 铀矿地质. 27(2):65-68.
[9]  范洪海,凌洪飞,王德滋,刘昌实,沈渭洲,姜耀辉. 2003. 相山铀矿田成矿机理研究[J]. 铀矿地质,19(4): 208-213.
[10]  范 裕,周涛发,袁 峰,唐敏惠,张乐骏,马 良,谢 杰. 2010. 庐枞盆地高硫化浅成低温热液成矿系统: 来自矾山明矾石矿床地质特征和硫同位素地球化学证据[J]. 岩石学报, 26(12): 3657-3666.
[11]  胡宝群,白丽红,徐达忠. 2001.下庄铀矿田早期高温成矿作用及其意义[J].铀矿地质,17(5):280-284.
[12]  姜耀辉, 蒋少涌,凌洪飞. 2004. 地幔流体与铀成矿作用[J]. 地学前缘,11(2): 491-496.
[13]  蒋振频,薛振华,董永杰,周万蓬,喻建发,胡荣泉,张柳贵. 2004. 相山铀矿田6122矿床凝灰岩铀矿石成因探讨[J]. 华东理工学院学报,27(2): 118-122.
[14]  温志坚,杜乐天,刘正义. 1997. 相山铀矿田磷灰石与富矿形成的关系[J]. 铀矿地质,15(4):217-224.
[15]  温志坚,杜乐天,刘正义. 2000. 相山矿田热液水云母化及其与铀矿化关系研究[J]. 矿床地质,19(3):257-263.
[16]  巫建华,刘 帅,余达淦,章邦桐. 2005. 地幔流体与铀成矿模式[J]. 铀矿地质,21(4):196-203.
[17]  吴仁贵,余达淦. 2000. 相山铀矿田611和6122矿床与34号矿床矿石建造特征对比[J]. 铀矿地质,16(4):204-211.
[18]  Waber N, Schorscher H D and Peters T. 1992. Hydrothermal and supergene uranium mineralization at the Osamu Utsumi mine, Poos de Caldas, Minas Gerais, Brazil[J]. Journal of Geochemi
[19]  金景福,黄广荣. 1991. 铀矿床学[M]. 北京:原子能出版社.
[20]  李朝长,金和海. 2010. 庐枞地区东部黄梅尖岩体及周边地段找铀矿前景分析[J]. 安徽地质,20(3):197-203.
[21]  刘湘培,常印佛,吴言昌. 1988. 论长江中下游地区成矿条件和成矿规律[J]. 地质学报,(2):74-84.
[22]  刘湘培. 1989. 长江中下游地区矿床系列区域成矿模式[J]. 地质论评,(5):12-22.
[23]  娄 峰,李宏卫,陈光明,敖文波,赖中信,卢映新,杨燕娜. 2011. 花岗岩演化与铀钍元素富集的关系: 以粤北贵东岩体为例[J]. 地学前缘,18(1):110-117.
[24]  孟艳宁,范洪海,孙志富,陈璋如. 2011. 相山矿田居隆庵矿床钍矿物特征研究[J]. 矿物岩石地球化学通报,30(12):180-188.
[25]  任启江,刘孝善,徐兆文. 1991. 安徽庐枞中生代火山构造洼地及其成矿作用[J]. 北京:地质出版社,1-145.
[26]  更多...
[27]  唐永成,吴言昌,储国正. 1998. 安徽沿江地区铜金多金属矿床地质[M]. 北京: 地质出版社, 60-85.
[28]  王凤岗,范洪海,范存琨. 2010. 马达加斯加南部Tranomaro地区矽卡岩型钍矿钍的赋存状态及钍矿物特征研究[J]. 世界核地质科学,27(4):10-213.
[29]  王正其,李子颖. 2007. 幔源铀成矿作用探讨[J]. 地质论评,53(5):608-615
[30]  余达淦,吴仁贵,陈培荣. 2007. 铀资源地质学[M]. 哈尔滨:哈尔滨工程大学出版社.
[31]  袁 峰,周涛发,范裕,陆三明,钱存超, 张乐骏,段超,唐敏慧. 2008. 庐枞盆地中生代火山岩的起源、演化及形成背景[J]. 岩石学报,24(8):1691-1702.
[32]  翟裕生,姚书振,林新多. 1992. 长江中下游地区铁铜(金)成矿规律[M]. 北京:地质出版社. 12-35.
[33]  章卫星,冯为华,张宝松. 2007. 江西邹家山铀矿绿泥石形成温度及其成矿关系[J]. 资源调查与环境,28(4):293-397.
[34]  张祖还, 赵懿英,章邦桐. 1986. 铀地球化学[M]. 北京: 原子能出版社.
[35]  朱杰辰,郑懋公,营俊龙,张宏,游云飞. 1992. 大龙山、昆山铀矿床稳定同位素地质特征研究[J]. 铀矿地质,8(6).
[36]  庄金银,黄永亮,徐 莹. 2009. 安徽省庐枞地区铀矿水化学特征[J]. 西部探矿工程,(3):86-97.
[37]  周涛发,范 裕,袁 峰. 2008. 长江中下游成矿带成岩成矿作用研究进展[J]. 岩石学报,24( 8): 1665-1678.
[38]  周涛发,范 裕,袁 峰,宋传中,张乐骏,钱存超,陆三明,David R C. 2010. 庐枞盆地侵入岩的时空格架和对成矿制约[J]. 岩石学报,26(9):2694-2714.
[39]  周涛发,范 裕,袁 峰,张乐骏,马 良,钱 兵,谢 杰. 2011. 长江中下挸愐泿…?硱炩泆漰犄愐璩椐濿湜?????ㄠ?㈨???????ㄩ?祝??戭爷?地栮椠琼晢楲放求摡??????删潈朠敡牮獤?????坡?慳湤摯??摩慲洠獋?????匹????????呩桵敭?牡敮汤愠瑴楨潯湲獩桵業瀠?扯敬瑵睢敩敬湩?瑩桥敳?灩敮琠牳潵汢潤杵祣?慩湯摮?瑺桯敮?琠桦潬牵楩畤浳?慊湝搮?畅牡慲湴楨甠浡?捤漠湐瑬敡湮瑥獴?潲晹?獓潣浩敥?杣牥愠湌楥瑴楴捥?牳漬挱欲猴嬺?崱???攲漹挮格楢浲椾捂慡?敯琠??漠獒浹潢捡档楨洠楌挠慡??挠瑗慥??????????劳???????action of uranium and thorium from Swiss granites and their micro distribution[J]. Chemical Geology, 39(3/4):281-297.
[40]  Chen G N and Grapes R. 2007. Granite Genesis: In-situ Melting and Crustal Evolution[M]. Netherlands: Springer.
[41]  Emond JS, Bornhorst T J, Noble D C and Rose W J.1983. Distribution and mobility of uranium and thorium in the peralkaline soldier meadow tuff, northwestern Nevada[J]. Economic Geology, (78):353-358.
[42]  James M M, Lee D E and Millard H T. 1981. The distribution of uranium and thorium in granitic rocks of the basin and range province, Western United States[J]. Journal of Geochemical Exploration, (4): 25-40.
[43]  Kamineni D C, Chung C F and Dugal J B. 1986. Distribution of uranium and thorium in core samples from the underground research laboratory lease area, southeastern Manitoba, Canada[J]. Chemical Geology, 54(1/2): 97-111.
[44]  Mercadier J, Richard A and Cathelineau M. 2012. Boron- and magnesium-rich marine brines at the origin of giant unconformity-related uranium deposits: δ11B evidence from Mg-tourmalines[J]. Geological Society of America, 3(40):231-234.
[45]  Nevskii V A and Kozlova P S. 1965. Two genetic types of postmagmatic thorium-rare-earth deposits[J]. Soviet Atomic Energy, 19(3): 1193-1197.
[46]  Pliler R and Adams J. 1962. The distribution of thorium and uranium in a Pennsylvanian weathering profile[J]. Geochimica et Cosmochimica Acta, 26(11): 1137-1146.
[47]  Ragland P C, Billings G K and Adams J A S. 1967. Chemical fractionation and its relationship to the distribution of thorium and uranium in a zoned granite batholiths[J]. Geochimica et Cosmochimica Acta, 31(1):17-32.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133