Abraitis P K, Pattrick R A D and Vaughan D J. 2004. Variations in the compositional, textural and electrical properties of natural pyrite: A review[J]. International Journal of Mineral Processing, 74(1-4): 41-59.
[19]
Bajwah Z U, Seccombe P K and Offler R. 1987. Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia[J]. Mineralium Deposita, 22(4): 292-300.
[20]
Bau M. 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 93(3-4): 219-230.
[21]
Bau M and Mller P. 1992. Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite[J]. Mineralogy and Petrology, 45(3): 231-246.
[22]
Bau M and Dulski P. 1995. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids[J]. Contributions to Mineralogy and Petrology, 119(2): 213-223.
[23]
Beaudoin G and Dupuis C. 2009. Iron-oxide trace element fingerprinting of mineral deposit types[R]. In Exploring for iron oxide copper-gold deposits: Canada and global analogues.GAC Short Course Notes.
[24]
Bralia A, Sabatini G and Troja F. 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J]. Mineralium Deposita, 14(3): 353-374.
[25]
Brill B A. 1989. Trace-element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn deposit, Australia[J]. Canadian Mineralogist, 27: 263-274.
[26]
Carew M J. 2004. Controls on Cu-Au mineralisation and Fe oxide metasomatism in the Eastern Fold Belt, NW Queensland, Australia (Ph.D. thesis)[D]. Supervisor. Queensland: James Cook University. 213-277.
[27]
Carew M J, Mark G, Oliver N H S and Pearson N. 2006. Trace element geochemistry of magnetite and pyrite in Fe oxide (+/-Cu-Au) mineralised systems: Insights into the geochemistry of ore-forming fluids[J]. Geochimica et Cosmochimica Acta, 70(18): A83-A83.
[28]
Chouinard A, Paquette J and Williams-Jones A E. 2005. Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-Argentina[J]. Canadian Mineralogist, 43(3): 951-963.
[29]
Dupuis C and Beaudoin G. 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 46(3): 1-17.
[30]
Elderfield H and Sholkovitz E R. 1987. Rare earth elements in the pore waters of reducing nearshore sediments[J]. Earth and Planetary Science Letters, 82(3-4): 280-288.
[31]
Graf J L. 1977. Rare earth elements as hydrothermal tracers during the formation of massive sulfide deposits in volcanic rocks[J]. Econ. Geol., 72(4): 527-548.
[32]
Haas J R, Shock E L and Sassani D C. 1995. Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 59(21): 4329-4350.
[33]
Hawley J and Nichol I. 1961. Trace elements in pyrite, pyrrhotite and chalcopyrite of different ores[J]. Econ. Geol., 56(3): 467-487.
[34]
Huang X W, Qi L, Gao J F and Zhou M F. 2013a. First reliable Re-Os ages of pyrite and stable isotope compositions of Fe(-Cu) deposits in the Hami region, Eastern Tianshan Orogenic Belt, NW China[J]. Resource Geology, 63(2): 166-187.
[35]
Huang X W, Qi L and Meng Y M. 2013b. Trace element geochemistry of magnetite from the Fe(-Cu) deposits in the Hami region, Eastern Tianshan Orogenic Belt, NW China[J]. Acta Geologica Sinica (English Edition) (accepted).
[36]
Huston D L, Sie S H, Suter G F, Cooke D R and Both R A. 1995. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Econ. Geol., 90(5): 1167-1196.
[37]
Ilton E S and Eugster H P. 1989. Base metal exchange between magnetite and a chloride-rich hydrothermal fluid[J]. Geochimica et Cosmochimica Acta, 53(2): 291-301.
[38]
Lakshtanov L and Stipp S. 2004. Experimental study of europium (III) coprecipitation with calcite[J]. Geochimica et Cosmochimica Acta, 68(4): 819-827.
[39]
Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C and Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43.
[40]
Loftus-Hills G and Solomon M. 1967. Cobalt, nickel and selenium in sulphides as indicators of ore genesis[J]. Mineralium Deposita, 2(3): 228-242.
[41]
Lottermoser B G. 1992. Rare earth elements and hydrothermal ore formation processes[J]. Ore Geology Reviews, 7(1): 25-41.
[42]
Michard A, Albarede F, Michard G, Minster J F and Charlou J L. 1983. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N)[J]. Nature, 303(5920): 795-797.
[43]
Mills R A and Elderfield H. 1995. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26 N Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 59(17): 3511-3524.
[44]
Nadoll P, Mauk J L, Hayes T S, Koenig A E and Box S E. 2012. Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States[J]. Econ. Geol., 107(6): 1275-1292.
[45]
Nielsen R L, Forsythe L M, Gallahan W E and Fisk M R. 1994. Major-and trace-element magnetite-melt equilibria[J]. Chemical geology, 117(1): 167-191.
[46]
Oberthüer T, Cabri L J, Weiser T J, McMahon G and Mueller P. 1997. Pt, Pd and other trace elements in sulfides of the Main Sulfide Zone, Great Dyke, Zimbabwe: A reconnaissance study[J]. Canadian Mineralogist, 35(3): 597-609.
[47]
Pirajno F. 2009. Hydrothermal processes and mineral systems[M]. London: Springer.
[48]
Price B G. 1972. Minor elements in pyrites from the Smithers Map area, B. C. and exploration applications of minor elements studies (M.Sc.)[D]. Supervisor. University of British Columbia. 270.
[49]
Qi L and Gregoire D C. 2000. Determination of trace elements in twenty six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 24(1): 51-63.
[50]
Roberts I. 1982. Trace element chemistry of pyrite: A useful guide to the occurrence of sulfide base metal mineralization[J]. Journal of Geochemical Exploration, 17(1): 49-62.
[51]
Rudnick R L and Gao S. 2003. Composition of the continental crust[A]. In: Holland H D and Turekian K K, eds. Treatise on geochemistry[C]. Oxford: Elsevier-Pergaman. 1-64.
[52]
Rusk B G, Oliver N H S, Zhang D, Brown A, Lilly R and Jungmann D. 2009 .Compositions of magnetite and sulfides from barren and mineralized IOCG deposits in the eastern succession of the Mt Isa Inlier, Australia[R]. Society for Geology Applied to Mineral Deposits, 10th Bi-ennial SGA Meeting. Townsville, Australia.
[53]
Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32(5): 751-767.
[54]
Taylor S R and McLennan S M. 1985. The continental crust:Its composition and evolution[M]. Palo Alto, CA: Blackwell Scientific Publisher.
[55]
Terakado Y and Masuda A. 1988. The coprecipitation of rare-earth elements with calcite and aragonite[J]. Chemical Geology, 69(1): 103-110.
[56]
Tossell J, Vaughan D and Burdett J. 1981. Pyrite, marcasite, and arsenopyrite type minerals: Crystal chemical and structural principles[J]. Physics and Chemistry of Minerals, 7(4): 177-184.
[57]
Vaughan D J and Craig J R. 1978. Mineral chemistry of metal sulfides[M]. Vol. 250. Cambridge: Cambridge University Press.
[58]
Wood S A. 1990a. The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters[J]. Chemical Geology, 82: 159-186.
[59]
Wood S A. 1990b. The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoretical predictions of speciation in hydrothermal solutions to 350℃ at saturation water vapor pressure[J]. Chemical Geology, 88(1-2): 99-125.
Shen P, Shen Y C, Liu T B, Li G M and Zeng Q D. 2007. Genesis of volcanic-hosted gold deposits in the Sawur gold belt, northern Xinjiang, China: Evidence from REE, stable isotopes, and noble gas isotopes[J]. Ore Geology Reviews, 32(1-2): 207-226.
[73]
Singoyi B, Danyushevsky L, Davidson G J, Large R and Zaw K. 2006. Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique[R]. SEG Keystone Conference. Denver, USA: CD-ROM.
[74]
Su W, Hu R, Xia B, Xia Y and Liu Y. 2009. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China[J]. Chemical Geology, 258(3): 269-274.
[75]
Sutherland J K. 1967. The chemistry of some New Brunswick pyrites[J]. Canadian Mineralogist, 9(1): 71-84.
[76]
Sverjensky D A. 1984. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 67(1): 70-78.
[77]
Taylor R P and Fryer B J. 1982. Rare earth element geochemistry as an aid to interpreting hydrothermal ore deposits[J]. Metallization Associated with Acid Magmatism, 6: 357-365.