全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2013 

东天山黑峰山、双峰山及沙泉子(铜)铁矿床的矿物微量和稀土元素地球化学特征

Keywords: 地球化学,微量元素,稀土元素,磁铁矿,黄铁矿,方解石,铁矿床,东天山,新疆

Full-Text   Cite this paper   Add to My Lib

Abstract:

东天山黑峰山铁矿床、双峰山铁矿床以及沙泉子铜铁矿床位于新疆哈密盆地以南,是东天山阿齐山-雅满苏构造带的重要矿床。文章利用磁铁矿、黄铁矿和方解石的微量元素及稀土元素组成示踪了这些矿床的成矿流体来源和性质,初步探讨了矿床的成因类型。激光剥蚀(LA)-ICP-MS磁铁矿微量元素分析表明,三个矿床的磁铁矿具有非常低的w(V)、w(Cr)和w(Ti)(平均分别为68×10-6、13×10-6和237×10-6),指示磁铁矿形成于热液过程而不是岩浆分异。黄铁矿中较高的Cu含量可能反映了含Cu矿物微颗粒的存在。黄铁矿中较低的Pb、Zn含量可能反映了成矿流体中较低的Pb2+和Zn2+浓度。黄铁矿中的Co/Ni比值表明这些矿床均为火山-热液成因。三个矿床黄铁矿的稀土元素总量都很低(ΣREE为0.58×10-6~3.02×10-6),黑峰山铁矿中的黄铁矿轻、重稀土元素分馏不明显,双峰山铁矿和沙泉子铜铁矿中的黄铁矿均为轻稀土元素富集型,(La/Yb)N分别为3.51~13.4和2.76~17.2。三个矿床略有差别的方解石稀土元素配分模式,反映了其流体组成和形成机制的差别。黑峰山铁矿中的重稀土元素富集型的方解石稀土元素配分模式为方解石Sm-Nd定年提供了依据。三个矿床的黄铁矿和方解石均无Ce异常,黑峰山铁矿中的黄铁矿和方解石表现为负Eu异常,而双峰山铁矿和沙泉子铜铁矿中的黄铁矿和方解石表现为正Eu异常,反映了三个矿床均形成于较高的温度,前者成矿流体可能为碱性,后两者成矿流体为酸性、还原性。结合前人研究成果认为,黑峰山铁矿、双峰山铁矿及沙泉子铜铁矿均为火山热液-充填(交代)矿床。

References

[1]  毕献武, 胡瑞忠, 彭建堂, 吴开兴. 2004. 黄铁矿微量元素地球化学特征及其对成矿流体性质的指示[J]. 矿物岩石地球化学通报, 23(1): 1-4.
[2]  陈懋弘, 吴六灵, Phillip J U, Tony N, 郑建民, 秦运忠. 2007. 贵州锦丰(烂泥沟)金矿床含砷黄铁矿和脉石英及其包裹体的稀土元素特征[J]. 岩石学报, 23(10): 2423-2433.
[3]  彭建堂, 胡瑞忠, 漆 亮, 赵军红, 符亚洲. 2004. 锡矿山热液方解石的REE分配模式及其制约因素[J]. 地质论评, 50(1): 25-32.
[4]  秦克章, 方同辉, 王书来, 朱宝清, 冯益民, 于海峰, 修群业. 2002. 东天山板块构造分区、演化与成矿地质背景研究[J]. 新疆地质, 20(4): 302-308.
[5]  任富根. 1985. 东疆天山地区某些铁矿床(矿化)的硫同位素组成特征及有关问题的讨论[J]. 中国地质科学院天津地质矿产研究所文集, 13: 49-62.
[6]  双 燕, 毕献武, 胡瑞忠, 彭建堂, 李兆丽, 李晓敏, 袁顺达, 齐有强. 2006. 芙蓉锡矿方解石稀土元素地球化学特征及其对成矿流体来源的指示[J]. 矿物岩石, 26(2): 57-65.
[7]  宋治杰, 任秉琛, 王心泉, 魏士娥, 杨树理, 姚爱民. 1983. 新疆北天山东段南缘火山-侵入杂岩地区雅满苏、黑峰山、沙泉子铁矿床形成条件的研究[J]. 中国地质科学院年报(增刊): 114-115.
[8]  宋治杰. 1985. 新疆哈密火山-杂岩地区一组磁铁矿床的形成条件与成矿作用[J]. 中国地质科学院西安地质矿产研究所文集, 9: 58-73.
[9]  更多...
[10]  王京彬,王玉往,何志军. 2006.东天山大地构造演化的成矿示踪[J].中国地质,33(3): 461-469.
[11]  肖 昱. 2003. 新疆哈密市沙泉子铜矿地质特征及其找矿方向[J]. 新疆有色金属, 26(2): 9-10.
[12]  徐晓彤, 袁万明, 龚庆杰, 吴发富, 黄志新, 邓 军. 2010. 利用裂变径迹定年分析新疆沙泉子铜铁矿成矿时代[J]. 中国矿业, 19(4): 105-108.
[13]  杨建明, 张玉君, 邓 刚, 薛春纪, 傅旭杰, 姚佛军, 高景刚. 2008. 中国天山铜矿带找矿靶区优选[M]. 北京: 地质出版社.
[14]  杨兴科, 陶洪祥, 罗桂昌, 姬金生. 1996. 东天山板块构造基本特征[J]. 新疆地质, 14(3): 221-227.
[15]  袁顺达, 彭建堂, 胡瑞忠, 漆亮, 沈能平, 张东亮. 2008. 湖南香花岭锡多金属矿床方解石稀土元素地球化学[J]. 矿物岩石地球化学通报(增刊): 174-177.
[16]  赵 斌. 1989. 中国主要夕卡岩及夕卡岩型矿床[M]. 火山热液作用形成的夕卡岩型矿床. 北京: 科学出版社. 258-268.
[17]  中色地科矿产勘查股份有限公司. 2008. 1:100万新疆东天山地区区域地质矿产图[R].
[18]  Abraitis P K, Pattrick R A D and Vaughan D J. 2004. Variations in the compositional, textural and electrical properties of natural pyrite: A review[J]. International Journal of Mineral Processing, 74(1-4): 41-59.
[19]  Bajwah Z U, Seccombe P K and Offler R. 1987. Trace element distribution, Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia[J]. Mineralium Deposita, 22(4): 292-300.
[20]  Bau M. 1991. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J]. Chemical Geology, 93(3-4): 219-230.
[21]  Bau M and Mller P. 1992. Rare earth element fractionation in metamorphogenic hydrothermal calcite, magnesite and siderite[J]. Mineralogy and Petrology, 45(3): 231-246.
[22]  Bau M and Dulski P. 1995. Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids[J]. Contributions to Mineralogy and Petrology, 119(2): 213-223.
[23]  Beaudoin G and Dupuis C. 2009. Iron-oxide trace element fingerprinting of mineral deposit types[R]. In Exploring for iron oxide copper-gold deposits: Canada and global analogues.GAC Short Course Notes.
[24]  Bralia A, Sabatini G and Troja F. 1979. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems[J]. Mineralium Deposita, 14(3): 353-374.
[25]  Brill B A. 1989. Trace-element contents and partitioning of elements in ore minerals from the CSA Cu-Pb-Zn deposit, Australia[J]. Canadian Mineralogist, 27: 263-274.
[26]  Carew M J. 2004. Controls on Cu-Au mineralisation and Fe oxide metasomatism in the Eastern Fold Belt, NW Queensland, Australia (Ph.D. thesis)[D]. Supervisor. Queensland: James Cook University. 213-277.
[27]  Carew M J, Mark G, Oliver N H S and Pearson N. 2006. Trace element geochemistry of magnetite and pyrite in Fe oxide (+/-Cu-Au) mineralised systems: Insights into the geochemistry of ore-forming fluids[J]. Geochimica et Cosmochimica Acta, 70(18): A83-A83.
[28]  Chouinard A, Paquette J and Williams-Jones A E. 2005. Crystallographic controls on trace-element incorporation in auriferous pyrite from the Pascua epithermal high-sulfidation deposit, Chile-Argentina[J]. Canadian Mineralogist, 43(3): 951-963.
[29]  Dupuis C and Beaudoin G. 2011. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J]. Mineralium Deposita, 46(3): 1-17.
[30]  Elderfield H and Sholkovitz E R. 1987. Rare earth elements in the pore waters of reducing nearshore sediments[J]. Earth and Planetary Science Letters, 82(3-4): 280-288.
[31]  Graf J L. 1977. Rare earth elements as hydrothermal tracers during the formation of massive sulfide deposits in volcanic rocks[J]. Econ. Geol., 72(4): 527-548.
[32]  Haas J R, Shock E L and Sassani D C. 1995. Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta, 59(21): 4329-4350.
[33]  Hawley J and Nichol I. 1961. Trace elements in pyrite, pyrrhotite and chalcopyrite of different ores[J]. Econ. Geol., 56(3): 467-487.
[34]  Huang X W, Qi L, Gao J F and Zhou M F. 2013a. First reliable Re-Os ages of pyrite and stable isotope compositions of Fe(-Cu) deposits in the Hami region, Eastern Tianshan Orogenic Belt, NW China[J]. Resource Geology, 63(2): 166-187.
[35]  Huang X W, Qi L and Meng Y M. 2013b. Trace element geochemistry of magnetite from the Fe(-Cu) deposits in the Hami region, Eastern Tianshan Orogenic Belt, NW China[J]. Acta Geologica Sinica (English Edition) (accepted).
[36]  Huston D L, Sie S H, Suter G F, Cooke D R and Both R A. 1995. Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems[J]. Econ. Geol., 90(5): 1167-1196.
[37]  Ilton E S and Eugster H P. 1989. Base metal exchange between magnetite and a chloride-rich hydrothermal fluid[J]. Geochimica et Cosmochimica Acta, 53(2): 291-301.
[38]  Lakshtanov L and Stipp S. 2004. Experimental study of europium (III) coprecipitation with calcite[J]. Geochimica et Cosmochimica Acta, 68(4): 819-827.
[39]  Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C and Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43.
[40]  Loftus-Hills G and Solomon M. 1967. Cobalt, nickel and selenium in sulphides as indicators of ore genesis[J]. Mineralium Deposita, 2(3): 228-242.
[41]  Lottermoser B G. 1992. Rare earth elements and hydrothermal ore formation processes[J]. Ore Geology Reviews, 7(1): 25-41.
[42]  Michard A, Albarede F, Michard G, Minster J F and Charlou J L. 1983. Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13°N)[J]. Nature, 303(5920): 795-797.
[43]  Mills R A and Elderfield H. 1995. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound, 26 N Mid-Atlantic Ridge[J]. Geochimica et Cosmochimica Acta, 59(17): 3511-3524.
[44]  Nadoll P, Mauk J L, Hayes T S, Koenig A E and Box S E. 2012. Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States[J]. Econ. Geol., 107(6): 1275-1292.
[45]  Nielsen R L, Forsythe L M, Gallahan W E and Fisk M R. 1994. Major-and trace-element magnetite-melt equilibria[J]. Chemical geology, 117(1): 167-191.
[46]  Oberthüer T, Cabri L J, Weiser T J, McMahon G and Mueller P. 1997. Pt, Pd and other trace elements in sulfides of the Main Sulfide Zone, Great Dyke, Zimbabwe: A reconnaissance study[J]. Canadian Mineralogist, 35(3): 597-609.
[47]  Pirajno F. 2009. Hydrothermal processes and mineral systems[M]. London: Springer.
[48]  Price B G. 1972. Minor elements in pyrites from the Smithers Map area, B. C. and exploration applications of minor elements studies (M.Sc.)[D]. Supervisor. University of British Columbia. 270.
[49]  Qi L and Gregoire D C. 2000. Determination of trace elements in twenty six Chinese geochemistry reference materials by inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 24(1): 51-63.
[50]  Roberts I. 1982. Trace element chemistry of pyrite: A useful guide to the occurrence of sulfide base metal mineralization[J]. Journal of Geochemical Exploration, 17(1): 49-62.
[51]  Rudnick R L and Gao S. 2003. Composition of the continental crust[A]. In: Holland H D and Turekian K K, eds. Treatise on geochemistry[C]. Oxford: Elsevier-Pergaman. 1-64.
[52]  Rusk B G, Oliver N H S, Zhang D, Brown A, Lilly R and Jungmann D. 2009 .Compositions of magnetite and sulfides from barren and mineralized IOCG deposits in the eastern succession of the Mt Isa Inlier, Australia[R]. Society for Geology Applied to Mineral Deposits, 10th Bi-ennial SGA Meeting. Townsville, Australia.
[53]  Shannon R D. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32(5): 751-767.
[54]  Taylor S R and McLennan S M. 1985. The continental crust:Its composition and evolution[M]. Palo Alto, CA: Blackwell Scientific Publisher.
[55]  Terakado Y and Masuda A. 1988. The coprecipitation of rare-earth elements with calcite and aragonite[J]. Chemical Geology, 69(1): 103-110.
[56]  Tossell J, Vaughan D and Burdett J. 1981. Pyrite, marcasite, and arsenopyrite type minerals: Crystal chemical and structural principles[J]. Physics and Chemistry of Minerals, 7(4): 177-184.
[57]  Vaughan D J and Craig J R. 1978. Mineral chemistry of metal sulfides[M]. Vol. 250. Cambridge: Cambridge University Press.
[58]  Wood S A. 1990a. The aqueous geochemistry of the rare-earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters[J]. Chemical Geology, 82: 159-186.
[59]  Wood S A. 1990b. The aqueous geochemistry of the rare-earth elements and yttrium: 2. Theoretical predictions of speciation in hydrothermal solutions to 350℃ at saturation water vapor pressure[J]. Chemical Geology, 88(1-2): 99-125.
[60]  地质部新疆维吾尔自治区地质局区域地质测量大队. 1965. 1:20万沙泉子幅K-46-23[R].
[61]  方维萱, 高珍权, 贾润幸, 刘正桃, 李丰收, 徐国端. 2006. 东疆沙泉子铜和铜铁矿床岩(矿)石地球化学研究与地质找矿前景[J]. 岩石学报, 22(5): 1413-1424.
[62]  何大伦, 周济元, 茅燕石. 1994. 东天山火山型铁矿床的产出特征及成矿机制[A]. 新疆地质科学第五辑[C]. 北京: 地质出版社. 41-53.
[63]  侯广顺,唐红峰,刘丛强. 2006.东天山党罗塔格构造带晚古生代火山岩地球化学特征及意义[J].岩石学报,22(5): 1167-1177.
[64]  黄小文, 漆 亮, 高剑峰, 刘莹莹, 王怡昌. 2012. 东天山觉罗塔格地区底坎儿组火山岩地球化学特征及构造环境探讨[J]. 岩石矿物学杂志, 31(6): 799-817.
[65]  黄智龙, 李文博, 陈 进, 吴 静, 韩润生, 刘丛强. 2003. 云南会泽超大型铅锌矿床构造带方解石稀土元素地球化学[J]. 矿床地质, 22(2): 199-207.
[66]  姜福芝, 秦克章, 方同辉, 王书来. 2002. 东天山铁矿床类型、地质特征成矿规律与找矿方向[J]. 新疆地质, 20(4): 379-383.
[67]  李厚民, 沈远超, 毛景文, 刘铁兵, 朱和平. 2003. 石英、黄铁矿及其包裹体的稀土元素特征——以胶东焦家式金矿为例[J]. 岩石学报, 19(2): 267-274.
[68]  李荣清. 1995. 湘南多金属成矿区方解石的稀土元素分布特征及其成因意义[J]. 矿物岩石, 15(4): 72-77.
[69]  李 源, 杨经绥, 张 健, 李天福, 陈松永, 任玉峰, 徐向珍. 2011. 新疆东天山石炭纪火山岩及其构造意义[J]. 岩石学报, 27(1): 193-209.
[70]  马瑞士, 舒良树, 孙家齐. 1997. 东天山构造演化与成矿[M]. 北京: 科学出版社. 152-170.
[71]  毛光周, 华仁民, 高剑峰, 赵葵东, 龙光明, 陆慧娟, 姚军明. 2006. 江西金山金矿床含金黄铁矿的稀土元素和微量元素特征[J]. 矿床地质, 25(4): 412-425.
[72]  Shen P, Shen Y C, Liu T B, Li G M and Zeng Q D. 2007. Genesis of volcanic-hosted gold deposits in the Sawur gold belt, northern Xinjiang, China: Evidence from REE, stable isotopes, and noble gas isotopes[J]. Ore Geology Reviews, 32(1-2): 207-226.
[73]  Singoyi B, Danyushevsky L, Davidson G J, Large R and Zaw K. 2006. Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique[R]. SEG Keystone Conference. Denver, USA: CD-ROM.
[74]  Su W, Hu R, Xia B, Xia Y and Liu Y. 2009. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type gold deposit, Guizhou, China[J]. Chemical Geology, 258(3): 269-274.
[75]  Sutherland J K. 1967. The chemistry of some New Brunswick pyrites[J]. Canadian Mineralogist, 9(1): 71-84.
[76]  Sverjensky D A. 1984. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 67(1): 70-78.
[77]  Taylor R P and Fryer B J. 1982. Rare earth element geochemistry as an aid to interpreting hydrothermal ore deposits[J]. Metallization Associated with Acid Magmatism, 6: 357-365.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133