Cooke D R, Hollings P and Walshe J L. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls[J]. Econ. Geol., 100: 801-818.
[2]
Deckart K, Clark A H, Aguilar A C, Vargas R R, Bertens N A, Mortensen J K and Fanning M. 2005. Magmatic and hydrothermal chronology of the giant Rio Blanco porphyry copper deposit, central Chile: Implications of an integrated U-Pb and 40Ar/39Ar database[J]. Econ. Geol., 100: 905-934.
[3]
Gow P A and Walshe J L. 2005. The role of preexisting geologic architecture in the formation of giant porphyry-related Cu±Au deposits: Examples from New Guinea and Chile[J]. Econ. Geol., 100: 819-833.
[4]
Harris A C, Dunlap J, Reiners P W, Allen C M. Cooke D R, White N C, Campbell I H and Golding S D. 2008. Multimillion year thermal history of a porphyry copper deposit: Application of U-Pb, 40Ar/39Ar and (U-Th)/He chronometers, Bajo de la Alumbrera copper-gold deposit, Argentina[J]. Mineralium Deposita, 43: 295-314.
[5]
Heinrich A C. 2007. Fluid-fluid interactions in magmatic-hydrothermal ore formation[J]. Reviews in Mineralogy and Geochemistry, 65: 363-387.
[6]
Hou Z Q, Yang Z M, Qu X M, Meng X J, Li Z Q, Beaudoin G, Rui Z Y, Gao Y S and Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 36: 25-51.
[7]
Kerrich R, Goldfarb R, Groves D and Garwin S. 2000. The geodynamics of world-class gold deposits: Characteristics, space-time distributions, and origins[J]. Reviews in Economic Geology, 13: 501-551.
[8]
Li J X, Qin K Z, Li G M, Xiao B, Zhao J X and Chen L. 2011. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet: Evidence from U-Pb and 40Ar/39Ar geochronology[J]. Journal of Asian Earth Sciences, 41: 525-536.
[9]
Lovera O M, Grove M and Harrison T M. 2002. Systematic analysis of K-feldspar 40Ar/39Ar step heating results Ⅱ: Relevance of laboratory argon diffusion properties to nature[J]. Geochimica et Cosmochimica Acta, 66: 1237-1255.
Lowell J D and Guilbert J M. 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Econ. Geol., 65: 373-408.
[19]
Ludwig K R. 2003. User\'s manual for Isoplot/Ex Verison 3.0, A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 4: 1-70.
[20]
Perkins C, McDougall I, Claoué-Long J and Heithersay P S. 1990. 40Ar/39Ar and U-Pb geochronology of the Goonumbla porphyry Cu-Au deposits, New South Wales, Australia[J]. Econ. Geol., 85: 1808-1824.
[21]
更多...
[22]
Redmond P B, Einaudi M T, Inan E E, Landtwing M R and Heinrich C A. 2004. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah[J]. Geology, 32: 217-220.
[23]
Reynolds P, Ravenhurst C, Zentilli M and Lindsay D. 1998. High-precision 40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system, Chile[J]. Chemical Geology, 148: 45-60.
[24]
Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Econ. Geol., 98: 1515-1533.
[25]
Richards J P. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere[J]. Geology, 37: 247-250.
[26]
Rusk B, Reed M H, Dilles J H, Klemm L M and Heinrich C A. 2004. Compositions of magmatic-hydrothermal fl uids determined by LA-ICPMS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, Montana[J]. Chemical Geology, 210: 173-199.
[27]
Seedorff E, Dilles J, Proffett J J, Einaudi M, Zurcher L, Stavast W, Johnson D and Barton M. 2005. Porphyry deposits: Characteristics and origin of hypogene features[M]. In: Hedenquist J W, Thompson J F H, Goldfarb R J, et al. eds. Economic Geology 100th Anniversary Volume, Society of Economic Geologists, Inc., Littleton, Colorado, USA, 251-298.
[28]
Shi R D. 2007. SHRIMP dating of the Bangong Lake SSZ-type ophiolite: Constraints on the closure time of the ocean in the Bangong Lake-Nujiang River, northwestern Tibet[J]. Chinese Science Bulletin, 52 (7): 936-941.
[29]
Shi R D, Yang J S, Xu Z Q and Qi X X. 2008. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong-Nujiang suture zone[J]. Journal of Asian Earth Sciences, 32: 438-57.
[30]
Sillitoe R H. 1988. Epochs of intrusion-related copper mineralization in the Andes[J]. Journal of South American Earth Sciences, 1: 89-108.
[31]
Sillitoe R H. 2010. Porphyry copper systems[J]. Econ. Geol., 105: 3-41.
[32]
Sun W D, Ling M X, Yang X Y, Fan W M, Ding X and Liang H Y. 2010. Ridge subduction and porphyry copper-gold mineralization: An overview[J]. Science in China (Earth Sciences), 53: 475-484.
[33]
Tosdal R J and Richards J P. 2001. Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits[J]. Society of Economic Geology Reviews, 14:157-181.
[34]
Zhu D C, Mo X X, Niu Y L, Zhao Z D, Wang L Q, Liu Y S and Wu F Y. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 268: 298-312.