全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2013 

西藏波龙斑岩铜金矿床钾长石和绢云母40Ar/39Ar年龄及其地质意义

Keywords: 地球化学,40Ar/39Ar年龄,钾长石化,绢英岩化,波龙斑岩铜金矿床,班公湖-怒江成矿带,西藏

Full-Text   Cite this paper   Add to My Lib

Abstract:

西藏波龙斑岩铜金矿床是新近在青藏高原中部发现的规模最大的斑岩型矿床。文章对该矿床内的蚀变钾长石和蚀变绢云母进行了40Ar/39Ar年代学测试,获得蚀变钾长石的40Ar/39Ar坪年龄为(118.33±0.60)Ma,反等时线年龄为(118.49±0.74)Ma(初始40Ar/36Ar=286.1±8.4),表明波龙斑岩铜金矿床的钾化蚀变年龄为118~119Ma;蚀变绢云母的40Ar/39Ar坪年龄为(121.61±0.67)Ma,反等时线年龄为(121.1±2.0)Ma(初始40Ar/36Ar=279±19)。由于蚀变绢云母测试样品内可能混入了斜长石,受其影响,蚀变绢云母测年结果的下限可能代表了该矿床绢英岩化蚀变年龄。这些蚀变钾长石和蚀变绢云母40Ar/39Ar测年结果与波龙矿床的成岩年龄值和成矿年龄值在误差范围内基本一致,表明该矿床的钾化和绢英岩化与成岩、成矿同期,该矿床的岩浆-热液活动过程的时限为121~118Ma。

References

[1]  Cooke D R, Hollings P and Walshe J L. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls[J]. Econ. Geol., 100: 801-818.
[2]  Deckart K, Clark A H, Aguilar A C, Vargas R R, Bertens N A, Mortensen J K and Fanning M. 2005. Magmatic and hydrothermal chronology of the giant Rio Blanco porphyry copper deposit, central Chile: Implications of an integrated U-Pb and 40Ar/39Ar database[J]. Econ. Geol., 100: 905-934.
[3]  Gow P A and Walshe J L. 2005. The role of preexisting geologic architecture in the formation of giant porphyry-related Cu±Au deposits: Examples from New Guinea and Chile[J]. Econ. Geol., 100: 819-833.
[4]  Harris A C, Dunlap J, Reiners P W, Allen C M. Cooke D R, White N C, Campbell I H and Golding S D. 2008. Multimillion year thermal history of a porphyry copper deposit: Application of U-Pb, 40Ar/39Ar and (U-Th)/He chronometers, Bajo de la Alumbrera copper-gold deposit, Argentina[J]. Mineralium Deposita, 43: 295-314.
[5]  Heinrich A C. 2007. Fluid-fluid interactions in magmatic-hydrothermal ore formation[J]. Reviews in Mineralogy and Geochemistry, 65: 363-387.
[6]  Hou Z Q, Yang Z M, Qu X M, Meng X J, Li Z Q, Beaudoin G, Rui Z Y, Gao Y S and Zaw K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 36: 25-51.
[7]  Kerrich R, Goldfarb R, Groves D and Garwin S. 2000. The geodynamics of world-class gold deposits: Characteristics, space-time distributions, and origins[J]. Reviews in Economic Geology, 13: 501-551.
[8]  Li J X, Qin K Z, Li G M, Xiao B, Zhao J X and Chen L. 2011. Magmatic-hydrothermal evolution of the Cretaceous Duolong gold-rich porphyry copper deposit in the Bangongco metallogenic belt, Tibet: Evidence from U-Pb and 40Ar/39Ar geochronology[J]. Journal of Asian Earth Sciences, 41: 525-536.
[9]  Lovera O M, Grove M and Harrison T M. 2002. Systematic analysis of K-feldspar 40Ar/39Ar step heating results Ⅱ: Relevance of laboratory argon diffusion properties to nature[J]. Geochimica et Cosmochimica Acta, 66: 1237-1255.
[10]  李光明, 段志明, 刘 波, 张 晖, 董随亮, 张 丽. 2011. 西藏班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的识别及意义[J]. 地质通报, 30(8): 1256-1260.
[11]  潘桂棠, 朱弟成, 王立全, 廖忠礼, 耿全如, 江新胜. 2004. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据[J]. 地学前缘, 11(4): 371-382.
[12]  潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 22(3): 521-533.
[13]  邱瑞照, 周 肃, 邓晋福, 李金发, 肖庆辉, 蔡志勇. 2004. 西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖-怒江蛇绿岩带形成时代[J]. 中国地质, 31(3): 262-268.
[14]  曲晓明, 辛洪波. 2006. 藏西班公湖斑岩铜矿带的形成时代与成矿构造环境[J]. 地质通报, 25(7): 792-799.
[15]  佘宏全, 李进文, 马东方,李光明, 张德全, 丰成友, 屈文俊, 潘桂棠. 2009. 西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义[J]. 矿床地质, 28(6): 737-746.
[16]  祝向平, 陈华安, 马东方, 黄瀚霄, 李光明, 李玉彬, 李玉昌. 2011. 西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义[J]. 岩石学报, 27(7): 2159-2164.
[17]  祝向平, 陈华安, 马东方, 黄瀚霄, 李光明, 刘朝强, 卫鲁杰. 2012. 西藏多不杂斑岩铜矿钾长石40Ar/39Ar年龄及其地质意义[J]. 现代地质, 26(4): 656-662.
[18]  Lowell J D and Guilbert J M. 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Econ. Geol., 65: 373-408.
[19]  Ludwig K R. 2003. User\'s manual for Isoplot/Ex Verison 3.0, A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication, 4: 1-70.
[20]  Perkins C, McDougall I, Claoué-Long J and Heithersay P S. 1990. 40Ar/39Ar and U-Pb geochronology of the Goonumbla porphyry Cu-Au deposits, New South Wales, Australia[J]. Econ. Geol., 85: 1808-1824.
[21]  更多...
[22]  Redmond P B, Einaudi M T, Inan E E, Landtwing M R and Heinrich C A. 2004. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah[J]. Geology, 32: 217-220.
[23]  Reynolds P, Ravenhurst C, Zentilli M and Lindsay D. 1998. High-precision 40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system, Chile[J]. Chemical Geology, 148: 45-60.
[24]  Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. Econ. Geol., 98: 1515-1533.
[25]  Richards J P. 2009. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere[J]. Geology, 37: 247-250.
[26]  Rusk B, Reed M H, Dilles J H, Klemm L M and Heinrich C A. 2004. Compositions of magmatic-hydrothermal fl uids determined by LA-ICPMS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, Montana[J]. Chemical Geology, 210: 173-199.
[27]  Seedorff E, Dilles J, Proffett J J, Einaudi M, Zurcher L, Stavast W, Johnson D and Barton M. 2005. Porphyry deposits: Characteristics and origin of hypogene features[M]. In: Hedenquist J W, Thompson J F H, Goldfarb R J, et al. eds. Economic Geology 100th Anniversary Volume, Society of Economic Geologists, Inc., Littleton, Colorado, USA, 251-298.
[28]  Shi R D. 2007. SHRIMP dating of the Bangong Lake SSZ-type ophiolite: Constraints on the closure time of the ocean in the Bangong Lake-Nujiang River, northwestern Tibet[J]. Chinese Science Bulletin, 52 (7): 936-941.
[29]  Shi R D, Yang J S, Xu Z Q and Qi X X. 2008. The Bangong Lake ophiolite (NW Tibet) and its bearing on the tectonic evolution of the Bangong-Nujiang suture zone[J]. Journal of Asian Earth Sciences, 32: 438-57.
[30]  Sillitoe R H. 1988. Epochs of intrusion-related copper mineralization in the Andes[J]. Journal of South American Earth Sciences, 1: 89-108.
[31]  Sillitoe R H. 2010. Porphyry copper systems[J]. Econ. Geol., 105: 3-41.
[32]  Sun W D, Ling M X, Yang X Y, Fan W M, Ding X and Liang H Y. 2010. Ridge subduction and porphyry copper-gold mineralization: An overview[J]. Science in China (Earth Sciences), 53: 475-484.
[33]  Tosdal R J and Richards J P. 2001. Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits[J]. Society of Economic Geology Reviews, 14:157-181.
[34]  Zhu D C, Mo X X, Niu Y L, Zhao Z D, Wang L Q, Liu Y S and Wu F Y. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 268: 298-312.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133