全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2013 

石碌钴-铜矿床流体包裹体和稳定同位素特征及成因

Keywords: 地球化学,流体包裹体,稳定同位素,钴-铜矿床成因,石碌

Full-Text   Cite this paper   Add to My Lib

Abstract:

海南石碌钴-铜矿体赋存于石碌群第六层的下段,即介于铁矿体与石碌群第五层片岩之间的含钴-铜层位中,容矿岩石主要为白云岩、透辉石透闪石化白云岩。钴-铜矿床的形成经历了海底喷溢沉积期、石英-硫化物期(热液期)和表生期。海底喷溢沉积期石英包裹体均一温度变化于112~205℃,多集中在130~205℃;盐度w(NaCleq)为1.74%~6.59%;密度变化于0.88~0.95g/cm3。温度范围与很多古代沉积喷流矿床及正在活动的海底热液成矿作用的温度相似,盐度低于曾报道的多数沉积喷流矿床的流体包裹体盐度值,但与那些同为低密度成矿流体的喷流沉积矿床极为相近。海底喷溢沉积期形成的硬石膏δ34S值为+21.4‰~+21.8‰,平均值为+21.6‰,强烈富集重硫,硬石膏δ34S值代表着新元古代石碌群沉积时海水的δ34S值。石英-硫化物期石英、白云石和方解石均一温度多集中在170~270℃;盐度w(NaCleq)为1%~7%;密度变化于0.88~0.95g/cm3。成矿流体属于中温低盐度流体。石英-硫化物期成矿流体δD值为-63‰~-83‰,成矿流体δ18O水值变化于1.3‰~6.8‰之间,指示成矿流体来源于岩浆,成矿后期有大气降水的加入。石英-硫化物期硫化物δ34S值为+8.1‰~+21.2‰,硫源来源于石碌群中蒸发岩的溶解作用。石碌钴-铜矿床属中温热液充填交代矿床,与矿床周围花岗质岩浆活动有关。

References

[1]  董树义, 顾雪祥, Oskar Schulz, Franz Vavtar, 刘建明, 郑明华, 程文斌. 2008. 湖南沃溪W-Sb-Au矿床成因的流体包裹体证据[J]. 地质学报,82(5):641-647.
[2]  海南省地质勘查局资源环境调查院. 2009. 海南省昌江县石碌接替资源勘查报告[R]. 内部资料.
[3]  海南省地质勘查局资源环境调查院. 2010. 海南省昌江县石碌矿区铁多金属矿接替资源详查地质报告[R]. 内部资料.
[4]  刘 斌,沈 昆. 1999. 流体包裹体热力学[M]. 北京: 地质出版社. 1-290.
[5]  吕古贤. 1988. 海南岛石碌铁矿含矿岩系中火山岩的新发现与研究[J]. 中国区域地质,(1):52-56.
[6]  王智琳,许德如,张玉泉,陈福雄,王 力,吴 俊. 2011. 海南石碌铁矿床花岗闪长斑岩的锆石LA-ICP-MS U-Pb定年及地质意义[J]. 大地构造与成矿学, 35(2): 292-299.
[7]  肖 勇,蔡仁杰,符启基,刘朝露,武占超,陈炳金.2010. 海南岛石碌铁、钴、铜多金属矿集区地质特征及找矿方向[J]. 矿产与地质,24(3):251-255.
[8]  许德如,肖 勇,夏 斌,蔡仁杰,侯 威,王 力,刘朝露,赵 斌. 2009. 海南石碌铁矿床成矿模式与找矿预测[M]. 北京: 地质出版社. 1-331.
[9]  中国科学院华南富铁科学研究队. 1986. 海南岛地质与石碌铁矿地球化学[M].北京:科学出版社. 1-376.
[10]  Ansdell K M, Nesbitt B E and Longstaffe F J. 1989. A fluid inclusion and stable isotope study of the Tom Ba-Pb-Zn deposit, Yukon, Canada[J]. Econ. Geol., 84 (4): 841-856.
[11]  Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 57: 683-684.
[12]  Claypool G E, Holser W T, Kaplan I R, Sakai H and Zak I. 1980. The age curves of sulphur and oxygen isotopes in marine sulphate and their mutual interpretation [J]. Chemical Geology, 28: 199-260.
[13]  Clayton R N. 1972. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 77: 3057-3607.
[14]  Collins P L F. 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity[J]. Econ. Geol., 74: 1435-1444.
[15]  El Desouky H A, Muchez P, Boyce A J, Schneider J, Cailteux J L H, Dewaele S and Von Quadt A. 2010. Genesis of sediment-hosted stratiform copper-cobalt mineralization at Luiswishi and Kamoto, Katanga Copperbelt (Democratic Republic of Congo) [J]. Mineralium Deposita, 45: 735-763.
[16]  Gardner H D and Hutchinson I. 1985. Geochemistry, mineralogy and geology of the Janson Pb-Zn deposits, Macmillan Pass, Yukon, Canada[J]. Econ. Geol., 80: 1257-1276.
[17]  Hagemann S G and Luders V. 2003. P-T-X conditions of hydrothermal fluids and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode-gold deposits, Western Australia: Conventional and infrared microthermometric constraints[J]. Mineralium Deposita, 38: 936-952.
[18]  Kampunzu A B, Cailteux J L H, Kamona A F, Intiomale M M and Melcher F. 2009.Sediment-hosted Zn-Pb-Cu deposits in the Central African Copperbelt [J]. Ore Geology Reviews, 35: 263-297.
[19]  Li X H, Zhou H W, Chung S L, Ding S J, Liu Y, Lee C Y, Ge W C, Zhang Y M and Zhang R J. 2002. Geochemical and Sm-Nd isotopic characteristics of metabasites from central Hainan Island, South China and their tectonic significance[J]. The Island Arc, 11: 193-205.
[20]  Machel H G, Krouse H R and Sassen R. 1995. Products and distinguishing criteria of bacterial and thermochemical sulphate reduction[J]. Applied Geochemistry, 10: 373-389.
[21]  更多...
[22]  McGowan R R, Roberts S and Boyce A J. 2006. Origin of the Nchanga copper-cobalt deposits of the Zambian Copperbelt[J]. Mineralium Deposita, 40: 617-638.
[23]  Peter J M and Scott S D. 1988. Mineralogy, composition and fluid inclusion microthermometry of seafloor hydrothermal deposits in the southern trough of Guaymas Basin, Gulf of California[J]. Canadian Mineralogist, 26: 567-587.
[24]  Samson I R and Russell M J. 1987. Genesis of t he Silvermines zinc-lead-barite deposit, Ireland: Fluid inclusion and stable isotope evidence [J]. Econ. Geol., 82: 371-394.
[25]  Taylor B E. 1986. Magmatic volatiles: Isotopic variation of C, H, and S[J]. Reviews in Mineralogy and Geochemistry, 16: 185-225.
[26]  Xu D R, Xia B, Li P C, Chen G H, Ma C and Zhang Y Q. 2007. Protolith natures and U-Pb sensitive high mass-resolution ion microprobe (SHRIMP) zircon ages of the metabasites in Hainan Island, South China: Implications for geodynamic evolution since the late Precambrian [J]. The Island Arc, 16: 575-597.
[27]  Xu D R, Xia B, Nonna B C, Bachlinski R, Li P, Chen G and Chen T. 2008. Geochemistry and Sr-Nd isotope systematics of metabasites in the Tunchang area, Hainan Island, South China: Implications for petrogenesis and tectonic setting[J]. Mineralogy and Petrology, 92: 361-391.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133