全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2013 

青海共和县加当根斑岩铜矿床成矿流体特征及演化

Keywords: 地球化学,斑岩铜矿,流体包裹体,地球化学,流体混合,加当根,东昆仑

Full-Text   Cite this paper   Add to My Lib

Abstract:

加当根矿床是近几年新发现的研究程度较低的斑岩型铜矿床,文章对含矿斑岩、石英脉和绢英中的石英岩开展了详细的流体包裹体特征及氢、氧同位素组成研究。该矿床流体包裹体类型丰富,以大量发育含子晶多相包裹体为特征,子矿物种类多样,包括石盐、钾盐、石膏、黄铜矿、黄铁矿、赤铁矿等。石膏、赤铁矿的出现,暗示着岩浆结晶早期处于氧化环境。成矿流体由来自岩浆的高温、高盐度流体和以天水成因为主的中-高温、低盐度流体2个端员组分组成,高温、高盐度流体为主要载矿流体,形成温度>440℃,w(NaCleq)为30%~82%,其是在浅成条件下于岩浆结晶的最后阶段从浅部岩浆中直接出溶形成的;中-高温、低盐度流体主要来源于天水或天水与晚期岩浆热液的混合,温度主要集中在220~360℃,w(NaCleq)<20%。石英流体包裹体氢、氧同位素研究表明流体混合在卸载成矿上的重要性,石英脉和绢英岩化阶段是含矿物质沉淀的主要阶段。脉石英的流体温度集中在280~440℃,绢英岩化蚀变石英中流体包裹体的均一温度介于240~340℃。

References

[1]  丰成友,李东生,吴正寿,马圣钞,李国臣,王 松. 2009. 青海东昆仑成矿带斑岩型矿床的确认及找矿前景分析[J]. 矿物学报,29(增):171-172.
[2]  郭国章,任启江,方长泉,徐文艺. 1994. 德兴斑岩铜矿成矿过程中地下热水运移的动力学模拟[J]. 地球化学,23(4):402-410.
[3]  李东生. 2001. 托克妥环形构造与铜的成矿关系及今后找矿方向[J]. 青海地质(增刊),41-43,47.
[4]  李光明,李金祥,秦克章,张天平,肖 波. 2007. 西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据[J]. 岩石学报,23(5):417-434.
[5]  李世金,孙丰月,丰成友,刘振宏,赵俊伟. 2008a. 青海东昆仑鸭子沟多金属矿的成矿年代学研究[J]. 地质学报,82(7):949-955.
[6]  李世金,孙丰月,王 力,李玉春,刘振宏,苏生顺,王 松. 2008b. 青海东昆仑卡尔却卡多金属矿区斑岩型铜矿的流体包裹体研究[J]. 矿床地质,27(3):399-406.
[7]  李兆麟. 1988. 实验地球化学[M]. 北京:地质出版社. 30-140.
[8]  刘 斌,沈 昆. 1999.流体包裹体热力学[M]. 北京:地质出版社. 1-230.
[9]  刘 敏,王志良,张作衡,陈伟十,杨 丹. 2009. 新疆东天山土屋斑岩铜矿床流体包裹体地球化学特征[J]. 岩石学报,25(6):1446-1455.
[10]  卢焕章,范宏瑞,倪 培,欧光习,沈 昆,张文淮. 2004. 流体包裹体[M]. 北京:科学出版社. 1-260.
[11]  莫宣学,罗照华,邓晋福,喻学惠,刘成东,湛宏伟,袁万明,刘云华. 2007. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报,13(3): 403-414.
[12]  芮宗瑶, 黄崇轲, 齐国明, 徐 珏, 张洪涛. 1984. 中国斑岩铜(钼)矿床[M]. 北京:地质出版社. 1-350.
[13]  佘宏全,丰成友,张德全,李光明,刘 波,李进文. 2006a. 西藏冈底斯铜矿带甲马夕卡岩型铜多金属矿床与驱龙斑岩型铜矿流体包裹体特征对比研究[J]. 岩石学报,22(3):689-696.
[14]  佘宏全,李进文,丰成友,马东方,潘桂棠,李光明. 2006b. 西藏多不杂斑岩铜矿床高温高盐度流体包裹体及其成因意义[J]. 地质学报,80(9):1434-1447.
[15]  佘宏全,张德全,景向阳,关 军,朱华平,丰成友,李大新. 2007. 青海省乌兰乌珠尔斑岩铜矿床地质特征与成因[J]. 中国地质,34(2):306-313.
[16]  宋治杰,张汉文,李文明,张心广,王 维. 1995. 青海鄂拉山地区铜多金属矿床的成矿条件及成矿模式[J]. 西北地质学,16(1):134-146.
[17]  孙延贵. 1999. 鄂拉山造山带中段哇洪拉分盆地的充填机制[J]. 青海地质,30-35.
[18]  孙延贵,张国伟,郭安林,王 瑾. 2004. 秦-昆三向联结构造及其构造过程的同位素年代学证据[J]. 中国地质,31(4):372-378.
[19]  吴健辉,丰成友,张德全,李进文,佘宏全. 2010. 柴达木盆地南缘祁漫塔格-鄂拉山地区斑岩-矽卡岩矿床地质[J]. 矿床地质,29(5):760-774.
[20]  尹 观,倪师军.2009. 同位素地球化学[M]. 北京:地质出版社. 50-120.
[21]  更多...
[22]  袁道阳,张培震,刘小龙,刘百篪,郑文俊,何文贵. 2004. 青海鄂拉山断裂带晚第四纪构造活动及其所反映的青藏高原东北缘的变形机制[J]. 地学前缘,11(4):394-402.
[23]  张德会,张文淮,许国建. 2001. 岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约[J]. 地学前缘,8(3):193-202.
[24]  张德会,徐九华,余心起,李健康,毛世德,王科强,李泳泉. 2011. 成岩成矿深度:主要影响因素与压力估算方法[J]. 地质通报,30(1):112-125.
[25]  张智勇,殷鸿福,王秉璋,王 瑾,张克信. 2004. 昆秦接合部海西期苦海-赛什塘分支洋的存在及其证据[J]. 地球科学, 29(6):691-696.
[26]  Baker T and Lang J R. 2003. Reconciling fluid inclusion types,fluid processes,and fluid sources in skarns:An example from the Bismark deposit,Mexico[J]. Mineralium Deposita, 38: 474-495.
[27]  Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta,57: 683-684.
[28]  Bodnar R J, Mavrogenes J A, Anderson A J, Bajt S, Sutton S R and Rivers M L.1993. Synchrotron XRF evidence for thesources and distribution of metals in porphyry copper deposits[J]. EOS,Trans. Am. Geophys. Union,74:669.
[29]  Bodnar R J. 1994. Sythetic fluid inclusions: Ⅶ.The system H2O-NaCl.Experimental determination of the halite liquids and isochors for a 40wt% NaCl solution[J]. Geochimica et Cosmochimica Acta, 58: 1053-1063.
[30]  Bodnar R J. 1995. Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits[A]. In: Thompson J F H, ed. Magmas, Fluids and Ore Deposits[C]. Mineral Association. Canada, Short Course Series,23: 139-152.
[31]  Clayton R N, O\'Neil J R and Mayeda T K. 1972. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research, 77: 3057-3607.
[32]  Cline J S and Bodnar R J. 1994. Direct evolution of brine from acrystallizing silicic melt at the Questa, New Mexico,molybdenum deposit[J]. Econ. Geol.,89 (8): 1780-1802.
[33]  Driesner T and Heinrich C A. 2007. The system H2O-NaCl Part I: Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000℃,0 to 5000 bar,and 0 to 1 XNaCl[J]. Geochimica et Cosmochimica Acta, 71: 4880-4901.
[34]  Drummond S E and Ohmoto H. 1985. Chemical evolution and mineral deposition in boiling hydrothermal systems[J]. Econ. Geol., 80: 126-147.
[35]  Fournier R O. 1999. Hydrothermal process related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment[J]. Econ. Geol., 94: 1193-1212.
[36]  Giggenbach W F. 1997. The origin and evolution of fluids in magmatic-hydrothermal systems[A]. Geochemistry of hydrothermal ore deposits[M]. New York:John Wiley. 737-796.
[37]  Hedenquist J W, Arribas A and Reynolds T J. 1998. Evolution of an intrusion-centered hydrothermal system:Far southeast-lepanto porphyry and epithermal Cu-Au deposits,Philippines[J]. Econ. Geol., 93: 373-404.
[38]  Heithersay P S and Walshe J L. 1995. Endeavour 26 North:A porphyry copper-gold deposite in the Late Ordovician shoshonitic Goonumbla Volcanic Complex,New South Wales,Australia[J]. Econ. Geol.,90: 1506-1532.
[39]  Henley R W and McNabb A. 1978. Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement[J]. Econ. Geol., 73: 1-19.
[40]  Rankin A H, Ramsey M H, Coles B, Van Langevelde F and Thomas C R. 1992. The composition of hypersaline, iron-rich granitic fluids based on laser-ICP and synchrotron-XRF microprobe analysis of individual fluid inclusions in topaz,Molegranite,eastern Australia[J]. Geochimica et Cosmochimica. Acta, 56: 67-79.
[41]  Redmond P B, Einaudi M T and Inan E E. 2004. Copper deposition by fluidcooling in intrusion-centered systems:New insights from the Bingham porphyry ore deposit,Utah[J]. Geology,32: 217-220.
[42]  Roedder E. 1970. Fluid inclusions studies on the porphyry-type ore deposits at Bingham,Utah,Butte, Montana,and Climax,Colorado[J]. Econ. Geol., 66: 98-120.
[43]  Roedder E and Bodnar R J.1980.Geologic pressure determinations from fluid inclusion studies[J]. Annual Review of Earth and Planetary Sciences,8: 263-301.
[44]  Seedorff E, Dilles J H, Proffett J R J M, Einacdi M T, Zurcher L, Stavast W J A, Johnson D A and Barton M D. 2005. Porphyry deposits: Characteristics and origin of hypogene features[A]. Hedenquist J W,et al. Econ. Geol. 100th Anniversary Volume[C]. Littleton: Society of Economic Geologists, Inc. 251-298.
[45]  Skinner B J. 1979. The many origins of hydrothermal mineral deposits[A]. In:Barnes H L,ed. Geochemistry of hydrothermal ore deposite[C]. New York: John Wiley and Sons. 1-12.
[46]  Sterner S M, Hall D L and Bodnar R J. 1988. Synthetic fluid inclusions-V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions[J]. Geochimica et Cosmochimica Acta,52: 989-1005.
[47]  Taylor H P J. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and one deposition[J]. Econ. Geol., 69: 843-883.
[48]  Ulrich T, Gunther D and Heinrich C A. 1999. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits[J]. Nature,399: 676-679.
[49]  Wilkinson J J, Rankin A H, Mulshaw S C, Nolan J and Ramsey M H. 1994. Laser ablation-ICP-AES for the determination of metals in fluid inclusions:An application to the study of magmatic ore fluids[J]. Geochimica et Cosmochimica Acta,58:1133-1146.
[50]  Wilkinson J J. 2001. Fluid inclusions in hydrothermal ore deposits[J]. Lithos,55: 229-272.
[51]  Zhang D, Xu G, Zhang W and Golding S D. 2007. High salinity fluid inclusions in the Yinshan polymetallic deposit from the Le-De metallogenic belt in Jiangxi Province,China:Their origin and implications for ore geresis[J]. Ore Geology Reviews, 31:247-260.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133