全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
矿床地质  2013 

新疆祁漫塔格巴什尔希钨锡矿床流体包裹体地球化学研究

Keywords: 地球化学,流体包裹体,钨锡矿床,巴什尔希,白干湖矿田,祁漫塔格,东昆仑

Full-Text   Cite this paper   Add to My Lib

Abstract:

白干湖矿田是由柯可卡尔德、白干湖、巴什尔希和阿瓦尔等钨锡矿床构成的一个超大型钨锡矿田,其中的巴什尔希矿床正处于勘查阶段。文章对其开展了详细的流体包裹体岩相学、显微测温和氢、氧同位素地球化学研究,结果表明热液石英脉中流体包裹体以含CO2包裹体最多,其次为液体包裹体,含子矿物包裹体很少见,属于H2O-CO2-NaCl体系。均一温度范围广,介于260~440℃,集中在300~380℃;成矿流体w(NaCleq)较低,大多介于4%~12%;CO2摩尔分数〔x(CO2)〕为0.043%~0.595%,集中于0~0.2%。CO2相密度约0.74~0.84g/cm3,H2O相密度1.02~1.10g/cm3;成矿时流体压力为80~160MPa。流体演化经历成矿前期、成矿期和成矿后期3个期次,各期次流体演化趋势不同,整体上流体从成矿前期到成矿后期均一温度和盐度逐渐降低。流体包裹体氢、氧同位素组成表明,钨锡主成矿期流体以岩浆水为主,到后期硫化物矿化阶段又混合有大气降水。

References

[1]  包亚范,刘延军,王鑫春. 2008. 东昆仑西段巴什尔希花岗岩与白干湖钨锡矿床的关系[J]. 吉林地质,27(3):56-67.
[2]  池国祥,卢焕章. 1991. 流体相分离的深度(压力)-温度场特征及其对热液矿床定位的意义[J]. 矿物学报,11(4):355-362.
[3]  丰成友,王 松,曾载淋,张德全,李大新,佘宏全. 2012. 赣南八仙脑破碎带型钨锡多金属矿床成矿流体和年代学研究[J]. 岩石学报,28(1):52-64.
[4]  李大新,丰成友,周安顺,李洪茂,李 鑫,刘建楠,肖 晔. 2012. 东昆仑祁漫塔格西段白干湖超大型钨锡矿田地质特征及其矿化交代岩分类[J]. 矿床地质,32(1): 37-54.
[5]  李敦朋,肖爱芳. 2010. 祁漫塔格西段白干湖钨锡矿区巴什尔希花岗岩序列及构造环境[J]. 西北地质,43(4):53-61.
[6]  李国臣,丰成友,王瑞江,李洪茂,周安顺,马圣钞,刘建楠,肖 晔. 2012a. 新疆若羌县柯可卡尔德钨锡矿床地质特征与流体包裹体研究[J]. 地质学报,86(1):209-218.
[7]  李国臣,丰成友,王瑞江,马圣钞,李洪茂,周安顺. 2012b. 新疆白干湖钨锡矿田东北部花岗岩锆石SIMS U-Pb年龄、地球化学特征及构造意义[J]. 地球学报,33(2):216-226.
[8]  李洪茂,刘 忠,时友东,王 速,王正科. 2005. 新疆东昆仑白干湖钨锡矿床地质特征[J]. 地质与资源,14(1):33-36.
[9]  李洪茂,时友东,刘 忠,王保金,王泽利,邱希萍. 2006. 东昆仑山若羌地区白干湖钨锡矿床地质特征及成因[J]. 地质通报,25(1-2):277-281.
[10]  刘 斌,沈 昆. 1999. 流体包裹体热力学. 北京:地质出版社. 1-230.
[11]  刘贵忠,李洪茂,王聚胜,张天民,宋成印. 2007. 新疆东昆仑白干湖钨锡矿田矿化体模型[J]. 新疆地质,25(2):169-174.
[12]  卢焕章,范宏瑞,倪 培,欧光习,沈 昆,张文淮. 2004. 流体包裹体[M]. 北京:科学出版社. 1-260.
[13]  卢焕章. 2011. 流体不混溶性和流体包裹体[J].岩石学报,27(5):1253-1261.
[14]  时友东,尹占军,孙兴友. 2004. 新疆东昆仑白干湖钨锡矿床Ⅲ矿段地质特征[J]. 吉林地质,23(4):44-48.
[15]  宋茂德,刘 忠,李洪茂,孙兴有. 2010. 新疆东昆仑白干湖成矿带成矿地质背景及找矿方向[J]. 西北地质,43(4):44-52.
[16]  王宝金,迟效国,刘 忠,李宏茂,时友东,李桂芝,张天民. 2007. 新疆东昆仑白干湖钨地球化学块体的确立及意义[J]. 地质与勘探,43(5):82-87.
[17]  王巧云,胡瑞忠,彭建堂,毕献武,武丽艳,刘 华,苏本勋. 2007. 湖南瑶岗仙钨矿床流体包裹体特征及其意义[J]. 岩石学报,23(9):2263-2273.
[18]  王旭东,倪 培,蒋少涌,黄建宝,孙立强. 2008. 赣南漂塘钨矿流体包裹体研究[J]. 岩石学报,24(9): 2163-2170.
[19]  王旭东,倪 培,张伯声,王天刚. 2010. 江西盘古山石英脉型钨矿床流体包裹体研究[J]. 岩石矿物学杂志,29(5): 539 -550.
[20]  席斌斌,张德会,周利敏,张文淮,王成江. 2008. 江西省全南县大吉山钨矿成矿流体演化特征[J]. 地质学报,82(7): 956-966.
[21]  更多...
[22]  张德会. 1997. 流体的沸腾和混合在热液成矿中的意义[J]. 地球科学进展, 12(6): 546-552.
[23]  Bakker R J, Dubessy J and Cathelineau M. 1996. Improvements in modelling:I. The H2O-CO2 system with various salts[J]. Geochimica et Cosmochimica Acta, 60: 1657-1681.
[24]  Bakker R J. 1997. Clathrates:Computer programs to calculate fluid inclusion V-X properties using clathrate melting temperatures[J]. Computers and Geosciences, 23: 1-18.
[25]  Benning L G and Seward T M. 1996. Hydrosulphide complexing of Au (I) in hydrothermal solutions from 150~400℃ and 500~1500 bar[J]. Geochimica et Cosmochimica Acta, 60: 1849-1871.
[26]  Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta,57:683-684.
[27]  Brown P E and Lamb W M. 1986. Mixing of H2O-CO2 in fluid inclusions; Geobarometry and Archean gold deposits[J]. Geochimica et Cosmochimica Acta, 50: 847-852.
[28]  Brown P E and Lamb W M. 1989a. P-V-T properties of fluids in the system H2O-CO2-NaCl: New graphical presentations and implications for fluid inclusion studies[J]. Geochimica et Cosmochimica Acta, 53: 1209-1221.
[29]  Brown P E. 1989b. FLINCOR: A microcomputer program for the reduction and investigation of fluid-inclusion data[J]. Am. Mineralogist, 74: 1390-1393.
[30]  Burrus R C.1981. Analysis of phase equilibria in C-O-H-S fluid inclusions[J]. Mineralogical Association of Canada Short Course Handbook.6:39-74.
[31]  Bussink R W, Kreulen R and Dejong A F M. 1984. Gas analyses, fluid inclusions and stable isotope of the Panasqueira W-Sn deposits, Portugal[J]. Bulletin De Mineralogie, 107(6):703-713.
[32]  Campbell A R and Robinson C S. 1987. Infrared fluid inclusion microthermometry on coexisting wolframite and quartz[J]. Econ. Geol.,82:1640-1645.
[33]  Campbell A R and Panter K S. 1990. Comparison of fluid inclusions in coexisting (cogenetic?) wolframite, cassiterite and quartz from St. Michael\'s Mount and Cligga Head, Cornwall, England[J]. Geochimica et Cosmochimica Acta, 54:673-681.
[34]  Clayton R N, O\'Neil J R and Mayeda T K. 1972. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research,77:3057-3607.
[35]  Collins P L F. 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity[J]. Econ. Geol., 74:1435-1444.
[36]  Diamond L W. 1994. Salinity of multivolatile fluid inclusions determined from clathrate hydrate stability[J]. Geochimica et Cosmochimica Acta, 58: 19-41.
[37]  Diamond L W.1992. Stability of CO2-clathrate-hydrate+CO2-liquid+CO2-vapor + aqueous KCl-NaCl solutions: Experimental determinationand application to salinity estimates of fluid inclusions[J]. Geochimica et Cosmochimica Acta, 54:545-552.
[38]  Graupner T, Kempe U and Dorbon E. 1999. Fluid regim and ore formation in the tungsten(-yttrium) deposits of Kyzyltau (Mongalian Altai) evidence for fluid variability in tungsten-tin ore systems[J]. Chemistry Geology, 154:29-40.
[39]  Harwood A. 1985. Tungsten-tin mineralization at Chojlla in the Taquesi batholith, Cordillera Real, Bolivia[A]. In: Halls, et al. eds. High heat production (HHP) granites, hydrothermal circulation and ore genesis: London[C]. Institution of Mining and Metallurgy,549-561.
[40]  Hou Z Q, Khin Z, Rona P, Li Y Q, Qu X M,Song S H,Peng L G and Huang J J. 2008. Geology, fluid inclusions, and oxygen isotope geochemistry of the Baiyinchang pipe-style volcanic-hosted massive sulfide Cu deposit in Gansu province, northwestern China[J]. Econ. Geol., 103:269-292.
[41]  Kelley W C and Rye R O. 1979. Geologic fluid inclusion and stable isotope studies of the tin-tungsten deposits of Panasqueirn, Portual[J]. Econ. Geol.,74:1721-1822.
[42]  Noronha F, Doria A, Dubessy J and Charoy B. 1992. Characterization and timing of the different types of fluids present in the barren and ore-viens of the W-Sn deposit of Panasqueira, central Portugal[J]. Mineralium Deposita, 27:72-79.
[43]  Parry W T. 1986. Estimation of xCO2, Pressure and fluid inclusion volume from fluid inclusion temperature measurements in the system NaCl-CO2-H2O[J]. Econ. Geol., 81: 1009-1013.
[44]  Phillips G N and Evans K A. 2004. Role of CO2 in the formation of gold deposits[J]. Nature, 429:860-863.
[45]  Rios F J, Aillas R N and Fuzikawa K. 2003. Fluid evolution in the Pedra Preta wolframite ore deposit, Paleproterozoic Musa granite, eastern Amazon Craton, Brazil[J]. Journal of South American Earth Sciences, 15:790-794.
[46]  Sakai H, Gamo T, Kim E S, Tsutsumi M, Tanka T, Ishibashi J, Wakita H, Yamano M and Oomori T. 1990. Venting of carbon dioxide-rich fluid and hydrate formation in mid-Okinawa trough backarc basin[J]. Science, 248:1093-1096.
[47]  Stefansson A and Seward T M. 2004. Gold(I) complexing in aqueous sulphide solutions to 500℃ at 500 bar[J]. Geochimica et Cosmochimica Acta, 68:4121-4143.
[48]  Vallance J, Cathelineau M, Mariganc C, Boiron M C, Fourcade S, Martineau F and Fabre C. 2001. Microfracturing and fluid mixing in granites:W-Sn ore deposition at Vaulry(NE French massif central)[J]. Tectonophysics,336:43-61.
[49]  Wood S A and Samson I M. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: I. relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl[J]. Econ. Geol., 95, 143-182.
[50]  Yang K and Scott S D. 1996. Possible contribution of metal-rich magmatic fluid to a seafloor hydrothermal system[J]. Nature, 383: 420-423.
[51]  Zaw U K. 1984. Geology and geothermometry of vein-type W-Sn deposit at Pennaichaung and Yetkanzintaung prospects, tavoy township, tennasserim division, southern Burna[J]. Mineralium Deposita,19:138-144.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133