Bakker R J, Dubessy J and Cathelineau M. 1996. Improvements in modelling:I. The H2O-CO2 system with various salts[J]. Geochimica et Cosmochimica Acta, 60: 1657-1681.
[24]
Bakker R J. 1997. Clathrates:Computer programs to calculate fluid inclusion V-X properties using clathrate melting temperatures[J]. Computers and Geosciences, 23: 1-18.
[25]
Benning L G and Seward T M. 1996. Hydrosulphide complexing of Au (I) in hydrothermal solutions from 150~400℃ and 500~1500 bar[J]. Geochimica et Cosmochimica Acta, 60: 1849-1871.
[26]
Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta,57:683-684.
[27]
Brown P E and Lamb W M. 1986. Mixing of H2O-CO2 in fluid inclusions; Geobarometry and Archean gold deposits[J]. Geochimica et Cosmochimica Acta, 50: 847-852.
[28]
Brown P E and Lamb W M. 1989a. P-V-T properties of fluids in the system H2O-CO2-NaCl: New graphical presentations and implications for fluid inclusion studies[J]. Geochimica et Cosmochimica Acta, 53: 1209-1221.
[29]
Brown P E. 1989b. FLINCOR: A microcomputer program for the reduction and investigation of fluid-inclusion data[J]. Am. Mineralogist, 74: 1390-1393.
[30]
Burrus R C.1981. Analysis of phase equilibria in C-O-H-S fluid inclusions[J]. Mineralogical Association of Canada Short Course Handbook.6:39-74.
[31]
Bussink R W, Kreulen R and Dejong A F M. 1984. Gas analyses, fluid inclusions and stable isotope of the Panasqueira W-Sn deposits, Portugal[J]. Bulletin De Mineralogie, 107(6):703-713.
[32]
Campbell A R and Robinson C S. 1987. Infrared fluid inclusion microthermometry on coexisting wolframite and quartz[J]. Econ. Geol.,82:1640-1645.
[33]
Campbell A R and Panter K S. 1990. Comparison of fluid inclusions in coexisting (cogenetic?) wolframite, cassiterite and quartz from St. Michael\'s Mount and Cligga Head, Cornwall, England[J]. Geochimica et Cosmochimica Acta, 54:673-681.
[34]
Clayton R N, O\'Neil J R and Mayeda T K. 1972. Oxygen isotope exchange between quartz and water[J]. Journal of Geophysical Research,77:3057-3607.
[35]
Collins P L F. 1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity[J]. Econ. Geol., 74:1435-1444.
[36]
Diamond L W. 1994. Salinity of multivolatile fluid inclusions determined from clathrate hydrate stability[J]. Geochimica et Cosmochimica Acta, 58: 19-41.
[37]
Diamond L W.1992. Stability of CO2-clathrate-hydrate+CO2-liquid+CO2-vapor + aqueous KCl-NaCl solutions: Experimental determinationand application to salinity estimates of fluid inclusions[J]. Geochimica et Cosmochimica Acta, 54:545-552.
[38]
Graupner T, Kempe U and Dorbon E. 1999. Fluid regim and ore formation in the tungsten(-yttrium) deposits of Kyzyltau (Mongalian Altai) evidence for fluid variability in tungsten-tin ore systems[J]. Chemistry Geology, 154:29-40.
[39]
Harwood A. 1985. Tungsten-tin mineralization at Chojlla in the Taquesi batholith, Cordillera Real, Bolivia[A]. In: Halls, et al. eds. High heat production (HHP) granites, hydrothermal circulation and ore genesis: London[C]. Institution of Mining and Metallurgy,549-561.
[40]
Hou Z Q, Khin Z, Rona P, Li Y Q, Qu X M,Song S H,Peng L G and Huang J J. 2008. Geology, fluid inclusions, and oxygen isotope geochemistry of the Baiyinchang pipe-style volcanic-hosted massive sulfide Cu deposit in Gansu province, northwestern China[J]. Econ. Geol., 103:269-292.
[41]
Kelley W C and Rye R O. 1979. Geologic fluid inclusion and stable isotope studies of the tin-tungsten deposits of Panasqueirn, Portual[J]. Econ. Geol.,74:1721-1822.
[42]
Noronha F, Doria A, Dubessy J and Charoy B. 1992. Characterization and timing of the different types of fluids present in the barren and ore-viens of the W-Sn deposit of Panasqueira, central Portugal[J]. Mineralium Deposita, 27:72-79.
[43]
Parry W T. 1986. Estimation of xCO2, Pressure and fluid inclusion volume from fluid inclusion temperature measurements in the system NaCl-CO2-H2O[J]. Econ. Geol., 81: 1009-1013.
[44]
Phillips G N and Evans K A. 2004. Role of CO2 in the formation of gold deposits[J]. Nature, 429:860-863.
[45]
Rios F J, Aillas R N and Fuzikawa K. 2003. Fluid evolution in the Pedra Preta wolframite ore deposit, Paleproterozoic Musa granite, eastern Amazon Craton, Brazil[J]. Journal of South American Earth Sciences, 15:790-794.
[46]
Sakai H, Gamo T, Kim E S, Tsutsumi M, Tanka T, Ishibashi J, Wakita H, Yamano M and Oomori T. 1990. Venting of carbon dioxide-rich fluid and hydrate formation in mid-Okinawa trough backarc basin[J]. Science, 248:1093-1096.
[47]
Stefansson A and Seward T M. 2004. Gold(I) complexing in aqueous sulphide solutions to 500℃ at 500 bar[J]. Geochimica et Cosmochimica Acta, 68:4121-4143.
[48]
Vallance J, Cathelineau M, Mariganc C, Boiron M C, Fourcade S, Martineau F and Fabre C. 2001. Microfracturing and fluid mixing in granites:W-Sn ore deposition at Vaulry(NE French massif central)[J]. Tectonophysics,336:43-61.
[49]
Wood S A and Samson I M. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: I. relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl[J]. Econ. Geol., 95, 143-182.
[50]
Yang K and Scott S D. 1996. Possible contribution of metal-rich magmatic fluid to a seafloor hydrothermal system[J]. Nature, 383: 420-423.
[51]
Zaw U K. 1984. Geology and geothermometry of vein-type W-Sn deposit at Pennaichaung and Yetkanzintaung prospects, tavoy township, tennasserim division, southern Burna[J]. Mineralium Deposita,19:138-144.