全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于相关向量机的中长期径流预报模型研究

DOI: 10.7511/dllgxb201201014, PP. 79-84

Keywords: 相空间重构,相关向量机,长期径流预报,PSO算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

鉴于其优越的预报性能,将相关向量机(RVM)应用到中长期径流预报中,并在相空间重构的基础上,建立了基于相关向量机的径流预报模型.该模型首先对径流时间序列进行相空间重构,并以重构后的径流序列作为模型输入;其次,采用粒子群优化(PSO)算法识别模型参数,利用优化所得重构参数验证时间序列具有混沌特性,在模型内循环过程中采用EM算法迭代估计超参数,并将RVM与应用较为广泛的最小二乘支持向量机(LSSVM)和自动回归滑动平均模型(ARMA)进行了比较分析,结果表明该模型具有较好的泛化能力;最后,基于水文过程变化的不确定性、RVM描述输出值的不确定度以及相应概率下的预报区间,使得调度人员在决策中能考虑预报的不确定性,定量估计各种决策的风险和效益.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133