全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于模糊聚类和BP神经网络的流域洪水分类预报研究

DOI: 10.7511/dllgxb200901023, PP. 121-127

Keywords: 洪水预报,分类,BP神经网络,模糊聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统的流域洪水预报大都通过率定一组水文模型参数来寻求一个流域径流形成的一般性或平均化规律,其预报精度需要进一步提高.用模糊聚类ISODATA迭代模型将历史洪水分为若干类型,进行水文预报模型参数的分类调试;并建立BP神经网络分类模型判断实时洪水所属类别,选择其相应类别的模型参数实现流域洪水的分类预报.在辽宁省大伙房水库流域的实际应用表明此方法不但可以实现洪水实时在线分类而且提高了流域整体洪水预报精度,是一种为水库实时调度提供可靠依据的有效洪水预报方法.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133