全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PPAR Research  2012 

Peroxisome Proliferator-Activated Receptor-γ-Mediated Polarization of Macrophages in Leishmania Infection

DOI: 10.1155/2012/796235

Full-Text   Cite this paper   Add to My Lib

Abstract:

Infection is the outcome of a contest between a pathogen and its host. In the disease leishmaniasis, the causative protozoan parasites are harbored inside the macrophages. Leishmania species adapt strategies to make the infection chronic, keeping a balance between their own and the host's defense so as to establish an environment that is favorable for survival and propagation. Activation of peroxisome proliferator-activated receptor (PPAR) is one of the tactics used. This ligand-activated nuclear factor curbs inflammation to protect the host from excessive injuries by setting a limit to its destructive force. In this paper, we report the interaction of host PPARs and the pathogen for visceral leishmaniasis, Leishmania donovani, in vivo and in vitro. PPAR expression is induced by parasitic infection. Leishmanial activation of PPARγ promotes survival, whereas blockade of PPARγ facilitates removal of the parasite. Thus, Leishmania parasites harness PPARγ to increase infectivity. 1. Leishmaniasis Leishmaniasis is caused by parasitic protozoa of the genus Leishmania. The disease is found worldwide, with an estimated prevalence of 12 million cases, 50,000 annual deaths, and 350 millions of the world’s population at risk [1]. Leishmania has two stages in its life cycle: flagellated promastigotes that live within the alimentary canal of the insect vector and amastigotes that multiply within the phagolysosomes of mammalian macrophages. Infected female sandflies introduce saliva and promastigotes into the mammalian host during blood meals. The promastigotes are taken by leukocytes and differentiate into intracellular amastigotes within the macrophages. Then, infected macrophages carry the parasites to different organs. Over twenty species are known to infect humans. The cutaneous species reside and multiply within the skin tissue, whereas the visceral species predominantly accumulate in the liver, spleen, and bone marrow. These diverse species cause different clinical manifestations, varying from self-healing or metastasizing skin lesions to enlargement of visceral organs including the liver and spleen. The disease symptoms are classified as cutaneous, mucocutaneous, or visceral leishmaniasis. 2. Resistance versus Susceptibility Immunity against all species of Leishmania uniformly relies on a type 1 immune response that produces interferon γ (IFNγ). Produced by T helper 1 cells, IFNγ activates macrophages to generate nitric oxide (NO), a free radical that can kill Leishmania. Type 2 immune response, on the other hand, is ineffective [2]. Production of

References

[1]  L. Kedzierski, A. Sakthianandeswaren, J. M. Curtis, P. C. Andrews, P. C. Junk, and K. Kedzierska, “Leishmaniasis: current treatment and prospects for new drugs and vaccines,” Current Medicinal Chemistry, vol. 16, no. 5, pp. 599–614, 2009.
[2]  F. P. Heinzel, M. D. Sadick, B. J. Holaday, R. L. Coffman, and R. M. Locksley, “Reciprocal expression of interferon γ or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets,” Journal of Experimental Medicine, vol. 169, no. 1, pp. 59–72, 1989.
[3]  S. Nylén and S. Gautam, “Immunological perspectives of leishmaniasis,” Journal of Global Infectious Diseases, vol. 2, pp. 135–146, 2010.
[4]  J. Ji, J. Masterson, J. Sun, and L. Soong, “CD4+CD25+ regulatory T cells restrain pathogenic responses during Leishmania amazonensis infection,” Journal of Immunology, vol. 174, no. 11, pp. 7147–7153, 2005.
[5]  R. Chatelain, S. Mauze, and R. L. Coffman, “Experimental Leishmania major infection in mice: role of IL-10,” Parasite Immunology, vol. 21, no. 4, pp. 211–218, 1999.
[6]  D. Sacks and C. Anderson, “Re-examination of the immunosuppressive mechanisms mediating non-cure of Leishmania infection in mice,” Immunological Reviews, vol. 201, pp. 225–238, 2004.
[7]  E. T. Guimar?es, L. A. Santos, R. Ribeiro dos Santos, M. M. Teixeira, W. L. C. dos Santos, and M. B. P. Soares, “Role of interleukin-4 and prostaglandin E2 in Leishmania amazonensis infection of BALB/c mice,” Microbes and Infection, vol. 8, no. 5, pp. 1219–1226, 2006.
[8]  R. Chatelain, S. Mauze, K. Varkila, and R. L. Coffman, “Leishmania major infection in interleukin-4 and interferon-γ depleted mice,” Parasite Immunology, vol. 21, no. 8, pp. 423–431, 1999.
[9]  J. Alexander and E. McFarlane, “Can type-1 responses against intracellular pathogens be T helper 2 cytokine dependent?” Microbes and Infection, vol. 10, no. 9, pp. 953–959, 2008.
[10]  F. O. Martinez, L. Helming, and S. Gordon, “Alternative activation of macrophages: an immunologic functional perspective,” Annual Review of Immunology, vol. 27, pp. 451–483, 2009.
[11]  M. Munder, K. Eichmann, and M. Modolell, “Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype,” Journal of Immunology, vol. 160, no. 11, pp. 5347–5354, 1998.
[12]  A. Chawla, “Control of macrophage activation and function by PPARs,” Circulation Research, vol. 106, no. 10, pp. 1559–1569, 2010.
[13]  A. Gallardo-Soler, C. Gómez-Nieto, M. L. Campo et al., “Arginase I induction by modified lipoproteins in macrophages: a peroxisome proliferator-activated receptor-γ/δ-mediated effect that links lipid metabolism and immunity,” Molecular Endocrinology, vol. 22, no. 6, pp. 1394–1402, 2008.
[14]  F. J. O. Rios, S. Jancar, I. B. Melo, D. F. J. Ketelhuth, and M. Gidlund, “Role of PPAR-gamma in the modulation of CD36 and FcgammaRII induced by LDL with low and high degrees of oxidation during the differentiation of the monocytic THP-1 cell line,” Cellular Physiology and Biochemistry, vol. 22, no. 5-6, pp. 549–556, 2008.
[15]  M. Ricote, J. S. Welch, and C. K. Glass, “Regulation of macrophage gene expression by the peroxisome proliferator-activated receptor-γ,” Hormone Research, vol. 54, no. 5-6, pp. 275–280, 2000.
[16]  N. Adapala and M. M. Chan, “Long-term use of an antiinflammatory, curcumin, suppressed type 1 immunity and exacerbated visceral leishmaniasis in a chronic experimental model,” Laboratory Investigation, vol. 88, no. 12, pp. 1329–1339, 2008.
[17]  R. G. Titus, M. Marchand, T. Boon, and J. A. Louis, “A limiting dilution assay for quantifying Leishmania major in tissues of infected mice,” Parasite Immunology, vol. 7, no. 5, pp. 545–555, 1985.
[18]  N. E. Reiner and C. J. Malemud, “Arachidonic acid metabolism in murine leishmaniasis (Donovani): ex-vivo evidence for increased cyclooxygenase and 5-lipoxygenase activity in spleen cells,” Cellular Immunology, vol. 88, no. 2, pp. 501–510, 1984.
[19]  N. E. Reiner and C. J. Malemud, “Arachidonic acid metabolism by murine peritoneal macrophages infected with Leishmania donovani: in vitro evidence for parasite-induced alterations in cyclooxygenase and lipoxygenase pathways,” Journal of Immunology, vol. 134, no. 1, pp. 556–563, 1985.
[20]  M. V. C. Lonardoni, C. L. Barbieri, M. Russo, and S. Jancar, “Modulation of Leishmania (L.) amazonensis growth in cultured mouse macrophages by prostaglandins and platelet activating factor,” Mediators of Inflammation, vol. 3, no. 2, pp. 137–141, 1994.
[21]  S. Cuzzocrea, N. S. Wayman, E. Mazzon et al., “The cyclopentenone prostaglandin 15-deoxy-Δ12,14-prostaglandin J2 attenuates the development of acute and chronic inflammation,” Molecular Pharmacology, vol. 61, no. 5, pp. 997–1007, 2002.
[22]  F. L. Ribeiro-Gomes, A. C. Otero, N. A. Gomes et al., “Macrophage interactions with neutrophils regulate leishmania major infection,” Journal of Immunology, vol. 172, no. 7, pp. 4454–4462, 2004.
[23]  C. Bonnans, K. Fukunaga, M. A. Levy, and B. D. Levy, “Lipoxin A4 regulates bronchial epithelial cell responses to acid injury,” American Journal of Pathology, vol. 168, no. 4, pp. 1064–1072, 2006.
[24]  M. M. Y. Chan and A. R. Moore, “Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E2-mediated lipoxin A4 production,” Journal of Immunology, vol. 184, no. 11, pp. 6418–6426, 2010.
[25]  G. Bannenberg and C. N. Serhan, “Specialized pro-resolving lipid mediators in the inflammatory response: an update,” Biochimica et Biophysica Acta, vol. 1801, no. 12, pp. 1260–1273, 2010.
[26]  A. Wenzel and G. Van Zandbergen, “Lipoxin A4 receptor dependent leishmania infection,” Autoimmunity, vol. 42, no. 4, pp. 331–333, 2009.
[27]  D. El Kebir and J. G. Filep, “Role of neutrophil apoptosis in the resolution of inflammation,” TheScientificWorldJournal, vol. 10, pp. 1731–1748, 2010.
[28]  J. L. M. Wanderley, M. E. C. Moreira, A. Benjamin, A. C. Bonomo, and M. A. Barcinski, “Mimicry of apoptotic cells by exposing phosphatidylserine participates in the establishment of amastigotes of Leishmania (L) amazonensis in mammalian hosts,” Journal of Immunology, vol. 176, no. 3, pp. 1834–1839, 2006.
[29]  J. Savill, N. Hogg, and C. Haslett, “Macrophage vitronectin receptor, CD36, and thrombospondin cooperate in recognition of neutrophils undergoing programmed cell death,” Chest, vol. 99, supplement 3, pp. 6S–7S, 1991.
[30]  G. Van Zandbergen, M. Klinger, A. Mueller et al., “Cutting edge: neutrophil granulocyte serves as a vector for Leishmania entry into macrophages,” Journal of Immunology, vol. 173, no. 11, pp. 6521–6525, 2004.
[31]  N. C. Peters, J. G. Egen, N. Secundino et al., “In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies,” Science, vol. 321, no. 5891, pp. 970–974, 2008.
[32]  G. Van Zandbergen, A. Bollinger, A. Wenzel et al., “Leishmania disease development depends on the presence of apoptotic promastigotes in the virulent inoculum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 37, pp. 13837–13842, 2006.
[33]  N. Noben-Trauth, P. Kropf, and I. Müller, “Susceptibility to Leishmania major infection in interleukin-4-deficient mice,” Science, vol. 271, no. 5251, pp. 987–990, 1996.
[34]  S. Doggrell, “Do peroxisome proliferation receptor-γ antagonists have clinical potential as combined antiobesity and antidiabetic drugs?” Expert Opinion on Investigational Drugs, vol. 12, no. 4, pp. 713–716, 2003.
[35]  J. Liu, X. Wu, B. Mitchell, C. Kintner, S. Ding, and P. G. Schultz, “A small-molecule agonist of the Wnt signaling pathway,” Angewandte Chemie, vol. 44, no. 13, pp. 1987–1990, 2005.
[36]  M. Soller, A. Tautenhahn, B. Brüne et al., “Peroxisome proliferator-activated receptor γ contributes to T lymphocyte apoptosis during sepsis,” Journal of Leukocyte Biology, vol. 79, no. 1, pp. 235–243, 2006.
[37]  J. I. Odegaard, R. R. Ricardo-Gonzalez, M. H. Goforth et al., “Macrophage-specific PPARγ controls alternative activation and improves insulin resistance,” Nature, vol. 447, no. 7148, pp. 1116–1120, 2007.
[38]  H. Martin, “Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components,” Mutation Research, vol. 690, no. 1-2, pp. 57–63, 2010.
[39]  M. M. Y. Chan, N. S. Adapala, and D. Fong, “Curcumin overcomes the inhibitory effect of nitric oxide on Leishmania,” Parasitology Research, vol. 96, no. 1, pp. 49–56, 2005.
[40]  M. M. Y. Chan, H. I. Huang, M. R. Fenton, and D. Fong, “In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties,” Biochemical Pharmacology, vol. 55, no. 12, pp. 1955–1962, 1998.
[41]  A. Jacob, R. Wu, M. Zhou, and P. Wang, “Mechanism of the anti-inflammatory effect of curcumin: PPAR-γ activation,” PPAR Research, vol. 2007, Article ID 89369, 2007.
[42]  Q. Kang and A. Chen, “Curcumin suppresses expression of low-density lipoprotein (LDL) receptor, leading to the inhibition of LDL-induced activation of hepatic stellate cells,” British Journal of Pharmacology, vol. 157, no. 8, pp. 1354–1367, 2009.
[43]  J. Lin and A. Chen, “Activation of peroxisome proliferator-activated receptor-γ by curcumin blocks the signaling pathways for PDGF and EGF in hepatic stellate cells,” Laboratory Investigation, vol. 88, no. 5, pp. 529–540, 2008.
[44]  S. Zheng and A. Chen, “Disruption of transforming growth factor-β signaling by curcumin induces gene expression of peroxisome proliferator-activated receptor-γ in rat hepatic stellate cells,” American Journal of Physiology, vol. 292, no. 1, pp. G113–G123, 2007.
[45]  L. Nicolas, E. Prina, T. Lang, and G. Milon, “Real-time PCR for detection and quantitation of Leishmania in mouse tissues,” Journal of Clinical Microbiology, vol. 40, no. 5, pp. 1666–1669, 2002.
[46]  M. M. Chan, K. W. Evans, A. R. Moore, and D. Fong, “Peroxisome proliferator-activated receptor (PPAR): balance for survival in parasitic infections,” Journal of biomedicine & biotechnology, vol. 2010, p. 828951, 2010.
[47]  A. Chawla, “Control of macrophage activation and function by PPARs,” Circulation Research, vol. 106, no. 10, pp. 1559–1569, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133