全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

2.5维自适应磁场重联MHD模式

, PP. 785-792

Keywords: 自适应,磁场重联,MHD数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

磁雷诺数(Rm)是影响磁场重联的重要因素.真实的物理环境中Rm往往很高,例如,在行星际空间和太阳日冕中Rm通常大于104量级.高Rm条件下的磁重联表现出很多异常特性,然而高Rm条件下的磁场重联数值模拟需要很高的时空分辨率,否则很难分辨出重联过程中形成的薄电流片.本文基于自适应软件包PARAMESH将并行自适应网格技术引入磁场重联数值模拟,建立了一个2.5维自适应磁场重联MHD模式,研究高磁雷诺数条件下重联的动态演化过程,进而将不同磁雷诺数的参数进行对比研究.结果表明,该模式可以自动捕捉到磁场重联产生的奇性电流片,高磁雷诺数条件下产生的慢激波结构可提供一种快速磁能释放机制.

References

[1]  Wei Fengsi, Hu Qiang, Feng Xueshang, Fan Quanlin. Magnetic reconnection phenomena in interplanetary space[J]. Space Sci. Rev., 2003, 107:107-110
[2]  Ugai M. Basic physical mechanism of fast reconnection evolution in space plasmas[J]. Space Sci. Rev., 2001, 95:601-611
[3]  Litvinenko Y E. Particle acceleration in reconnecting current sheets in impulsive electron-rich solar flares[J]. Solar Phys., 2000, 194:327-343
[4]  Litvinenko Y E. Electron acceleration in solar flares[J]. Adv. Space Res., 2003, 32:2385-2391
[5]  Gordovskyy M, Browning P K, Vekstein G E. Particle acceleration in fragmenting periodic reconnecting current sheets in solar flares[J]. Astrophys. J., 2010, 720:1603-1611
[6]  Fu X R, Lu Q M, Wang S. The process of electron acceleration during collisionless magnetic reconnection[J]. Phys. Plasmas, 2006, 13:1-8
[7]  Huang C, Lu Q M, Wang S. The mechanisms of electron acceleration in antiparallel and guide field magnetic reconnection[J]. Phys. Plasmas, 2010, 17:1-8
[8]  Priest E R, Forbes T G. The magnetic nature of solar flares[J]. Astron. Astrophys. Rev., 2002, 10:313-377
[9]  Cassak P A, Shay M A. Magnetic reconnection for coronal conditions: reconnection rates, secondary islands and onset[J]. Space Sci. Rev., 2011, 11:1-20
[10]  Wei Fengsi, Hu Qiang, Feng Xueshang. Numerical study of magnetic reconnection process near interplanetary current sheet[J]. Chin. Sci. Bull., 2001, 46:111-117
[11]  Barta M, Buchner J, Karlicky M. Multi-scale MHD approach to the current sheet filamentation in solar coronal reconnection[J]. Adv. Space Res., 2010, 45:10-17
[12]  Berger M J, Oliger J. Adaptive mesh refinement for hyperbolic partial differential equations[J]. J. Comput. Phys., 1984, 53:484-512
[13]  Barta M, Buchner J, Karlicky M. Spontaneous current-layer fragmentation and cascading reconnection in solar flares: II Relation to observations[J]. Astrophys. J., 2011, 47:1-6
[14]  Loureiro N F, Schekochihin A A, Cowley S C. Instability of current sheets and formation of plasmoid chains[J]. Phys. Plasmas, 2007, 14:100703-100707
[15]  Samtaney R, Loureiro N F, Uzdensky D A, Schekochihin A A, Cowley S C. Formation of plasmoid chains in magnetic reconnection[J]. Phys. Rev. Lett., 2009, 103:1-4
[16]  Huang Y M, Bhattacharjee A. Scaling laws of resistive magnetohydrodynamic reconnection in the high-Lundquist-number, plasmoid-unstable regime[J]. Phys. Plasmas, 2010, 17:062104-062111
[17]  Wang R S, Du A M, Wang S. In-situ observations of a secondary magnetic island in an ion diffusion region and associated energetic electrons[J]. Phys. Rev. Lett., 2010, 104:1-4
[18]  Li Xing, Huang C. Observations of energetic electrons up to 200keV associated with a secondary island near the center of an ion diffusion region: A Cluster case study[J]. J. Geophys. Res., 2010, 115:1-10
[19]  Kurganov A, Noelle S, Petrova G. Semidiscrete central-upwind schemes for hyperbolic conservation laws and hamilton-jacobi equations[J]. SIAM J. Sci. Comput., 2001, 23:707-740
[20]  Ziegler U. A central-constrained transport scheme for ideal magnetohydrodunamics[J]. J. Comput. phys., 2004, 196:393-416
[21]  Toth G. The abla · ±b B = 0 constraint in shock-capturing magnetohydrodynamics codes[J]. J. Comput. Phys., 2000, 161:605-652
[22]  Wang Y, Wei F S, Feng X S, Zhang S H, Zuo P B, Sun T R. Energetic electrons associated with magnetic reconnection in the magnetic cloud boundary layer[J]. Phys. Rev. Lett., 2010, 105:1-4
[23]  Birn J, Drake J F, Shay M A. Geospace Environmental Modeling (GEM) magnetic reconnection challenge[J]. J. Geophys. Res., 2001, 106:3715-3720
[24]  Loureiro N F, Cowley S C, Dorland W D, Haines M G, Schekochihin A A. X-point collapse and saturation in the nonlinear tearing mode reconnection [J]. Phys. Rev. Lett., 2005, 95:1-4
[25]  Oka M, Phan T D, Krucker S, Fujimoto M, Shinohara I. Electron acceleration by multi-Island coalescence[J]. Astrophys. J., 2010, 714:915-926
[26]  Aschwanden M J. Particle acceleration and kinematics in solar flares-A synthesis of recent observations and theoretical concepts[J]. Space Sci. Rev., 2002, 101:1-227
[27]  Birn J, Priest E R. Magnetohydrodynamics and Collisionless Theory and Observations[M]. Cambridge: Cambridge University Press, 2006
[28]  Wei Fengsi, Schwenn R, Hu Qiang. Magnetic reconnection events in the interplanetary space[J]. Sci. China E: Tech. Sci., 1997, 40:463-471

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133