全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

回转处理对雨生红球藻细胞结构、光合活性、糖及虾青素代谢的影响研究

, PP. 293-301

Keywords: 回转器,雨生红球藻,蔗糖,虾青素,糖代谢

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过利用二维回转器模拟微重力,对20d回转条件下雨生红球藻细胞结构、光合活性、初级糖代谢及次生代谢产物变化情况进行分析,发现回转作用使得藻细胞体积变小,形状变得不规则.超微结构分析显示,回转处理后,藻细胞的淀粉粒变小,类囊体膜结构排列松弛.叶绿素含量在回转前期降低,中后期提高.类胡萝卜素含量及光合系统II活性在整个回转过程中均降低.由此得出藻细胞光合活性的下降与叶绿体类囊体膜结构的变化及色素含量下降有关.藻细胞淀粉粒变小、淀粉含量下降与淀粉酶活性的上升有关,说明回转作用通过提高淀粉酶水解活性造成淀粉含量下降.蔗糖和海藻糖的积累在藻细胞对早期回转条件的适应过程中发挥了一定保护作用,同时造成合成此两种糖的单糖底物elax-elax葡萄糖和果糖含量下降.在被称作适应期的回转中期,叶绿素、葡萄糖和果糖均出现补偿性合成,而蔗糖和海藻糖的积累相比回转前期出现相应下降.雨生红球藻次生代谢产物虾青素在整个回转过程中均下降,分析认为这是由虾青素的原初合成底物即类胡萝卜素合成的降低所导致.

References

[1]  Hu Zhangli, Liu Yongding. Cell responses of Dunaliella salina} FACHB 435 (Green Alga) to microgravitational simulation by clinorotation[J]. Chin. Sci. Bull., 1998, 43(16):1750-1754. In Chinese (胡章立, 刘永定. 盐生杜氏藻细胞对回转器模拟微重力刺激的反应[J]. 科学通报, 1998, 43(16):1750-1754)
[2]  Chen Haofeng, Song Lirong, Liu Yongding, et al. Effect of spaceflight on the population increase and physiological features of microalga Anabaena siamensis[J]. Chin. J. Space Sci., 1997, 17:67-72. In Chinese (陈浩峰, 宋立荣, 刘永定, 等. 空间环境对微藻种群增长及其生理特性的影响[J]. 空间科学学报, 1997, 17:67-72)
[3]  Li Genbao Wang Gaohong, Song Lirong, et al. Lipid peroxidation in microalgae cells under simulated microgravity[J]. Space Med. Med. Eng., 2002, 15(4):270-272. In Chinese (李根保, 王高鸿, 宋立荣, 等. 模拟微重力下微藻细胞的脂质过氧化[J]. 航天医学与医学工程, 2002, 15(4):270-272)
[4]  Li Genbao, Liu Yongding, Wang Gaohong, et al. Reactive oxygen species and antioxidant enzymes activity of Anabaena} sp. PCC 7120 (Cyanobacterium) under simulated microgravity[J]. Acta Astron., 2004, 55:953-957
[5]  Liu Yongding, Lin Huiming, Dai Lingfen, et al. Effects of space-flight by retrievable satellite on Anabaena and Chlorella[J]. Chin. Sci. Bull., 1993, 38(2):177-180. In Chinese (刘永定, 林惠民, 戴玲芬, 等. 返地卫星搭载对鱼腥藻和小球藻的影响[J]. 科学通报, 1993, 38(2):177-180)
[6]  Popova A F. Structural changes of chloroplasts and galactolipid contents in Chlorella cells during clinorotation[J]. Tsitol. Genet, 2006, 40(2):39-43
[7]  Moleshko G I, Anton''yan A A, Sycheyev V N, et al. The effects of space flight factors on the pigment system of one-celled algae[J]. USSR Space Life Sci. Digest., 1991, 31:43-45
[8]  Wang Gaohong, Chen Lanzhou, Hu Chunxiang, et al. Studies on effects of spaceflight and irradiation on photosynthetic system of microalgae[J]. Med. Med. Eng., 2005, 18}(6):437-441. In Chinese (王高鸿, 陈兰州, 胡春香, 等. 空间飞行和辐射对微藻光合系统影响的观察[J]. 航天医学与医学工程, 2005, 18(6):437-441)
[9]  Sytnik K M, Popova A F, Nechitailo G S, et al. Peculiarities of the submicroscopic organization of Chlorella cells cultivated on a solid medium in microgravity[J]. Adv. Space Res., 1992, 12(1):103-107
[10]  Kordyum E L, Adamchuk N I. Clinorotation affects the state of photosynthetic membranes in Arabidopsis thaliana (L.) Heynh[J]. J. Grav. Physiol., 1997, 4:7-78
[11]  Xiao Y, Liu Y, Wang G, et al. Simulated microgravity alters growth and microcystin production in Microcystis aeruginosa} (cyanophyta)[J]. Toxicon, 2010, 56}:1-7
[12]  Musgrave M E, Kuang A, Tuominen L K, et al. Seed storage reserves and glucosinolates in Brassica rapa L. grown on the international space station[J]. J. Am. Soc. Hortic Sci., 2005, 130(6):848-856
[13]  Lababpour A, Hada K, Shimahara K, et al. Effects of nutrient supply methods and illumination with blue light emitting diodes (LEDs) on astaxanthin production by Haematococcus pluvialis[J]. J. Biosci. Bioeng., 2004, 98}(6):452-456
[14]  Van Loon J J W A. Some history and use of the random positioning machine, RPM, in gravity related research[J]. Adv. Space Res}., 2007, 39:1161-1165
[15]  Watson M L. Staining of tissue sections for electron microscopy with heavy metals[J]. J. Biophys. Biochem. Cytol., 1958, 4:475-478
[16]  Reynolds E S. The use of lead citrate at high pH as an electron opaque stain in electron microscopy[J]. J. Cell Biol., 1963, 17:208-212
[17]  Li Hesheng. Experiment Principle and Technology of Plant Physiology and Biochemistry[M]. Beijing: High Education Press, 2000. 194-197. In Chinese (李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. 194-197)
[18]  Tang Zhangcheng. Experimental Handbook of Modern Plant Physiology[M]. Beijing: Science Publishing Company, 1999. 127-128. In Chinese (汤章城. 现代植物生理学实验指南[M]. 北京: 科学出版社, 1999. 127-128)
[19]  Lillie S H, Ringle J R. Reserved carbohydrate metabolism in Saccharomyces cerevisiae: Responses to nutrient limitation[J]. J. Bacteriol., 1980, 143(3):1384-1394
[20]  Tan Haigang, Mei Yingjie, Guan Fengmei, et al. Determination of trehalose content by anthrone-sulphuric acid colorimetric method[J]. Modern Food Sci. Tech., 2006, 22(1):125-128. In Chinese(谭海刚, 梅英杰, 关凤梅, 等. 蒽酮-硫酸法测定酵母中海藻糖的含量[J]. 现代食品科技, 2006, 22}(1):125-128)
[21]  Xu Changjie, Chen Wenjun, Chen Kunsong, et al. A simple method for determining the content of starch-iodine colorimetry[J]. Biotechnology, 1998, 8(2):41-43. In Chinese (徐昌杰, 陈文峻, 陈昆松, 等. 淀粉含量测定的一种简便方法碘染色法[J]. 生物技术, 1998, 8}(2):41-43)
[22]  Boussiba S, Vonshak A. Astaxanthin accumulation in the green alga Haematococcus Pluvialis[J]. Plant Cell Physiol., 1991, 32:1077-1082
[23]  Stutte G W, Monje O, Hatfield R D, et al. Microgravity effects on leaf morphology, cell structure, carbon metabolism and mRNA expression of dwarf wheat[J]. Planta, 2006, 224:1038-1049
[24]  Miyamoto K, Yuda T, Shimazu T, et al. Leaf senescence under various gravity conditions: relevance to the dynamics of plant hormones[J]. Adv. Space Res., 2001, 27}(5):1017-1022
[25]  Jagtap S S, Awhad R B, Santosh B, et al. Effects of clinorotation on growth and chlorophyll content of rice seeds[J]. Micrograv. Sci. Tech., 2011, 23(1):41-48
[26]  Rumyantseva M N, Merzlyak M N, Mashinskiy A L, et al. Effect of space flight factors on the pigment and lipid composition of wheat plants[J]. Kosm. Biol. Aviakosm. Med., 1990, 24:53-56
[27]  Abilov Z K, Alekperov U K, Mashinskiy A L, et al. The morphological and functional state of the photosynthetic system of plant cells grown for varying periods under space flight conditions[J]. USSR Space Life Sci. Digest., 1986, 8}:15-18
[28]  Aliyev A A, Abilove Z K, Mashinskiy A L, et al. The ultrastructure and physiological characteristics of the photosynthesis system of shoots of garden peas grown for 29 days on the "Salyut-7" space station[J]. USSR Space Life Sci. Digest., 1987, 10:15-16
[29]  Zhao G Q, Ma B L, Ren C Z. Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity[J]. Crop Sci. Soc. Am., 2007, 47:123-131
[30]  Yamada M, Takeuchi Y, Kasahara H, et al. Plant growth under clinostat-microgravity condition[J]. Biol. Sci. Space, 1993, 7(2):116-119
[31]  Brown C S, Piastuch W C. Starch metabolism in germinating soybean cotyledons is sensitive to clinorotation and centrifugation[J]. Plant Cell Environ., 1994, 17: 341-344
[32]  Popova A F, Sytnik K M, Kordyum E L. Ultrastructural and growth indices of Chlorella culture in multicomponent aquatic system under space flight conditions[J]. J. Adv. Space Res., 1989, 9(11):79-82
[33]  Mortley D G, Bonsi C K, Hill W A, et al. Influence of microgravity environment on root growth, soluble sugars, and starch concentration of sweet potato stem cuttings[J]. J. Am. Soc. Hortic Sci., 2008, 133(3):327-332
[34]  Jiao S, Hilaire E, Paulsen A Q, et al. Brassica rapa} plants adapted to microgravity with reduced photosystem I and its photochemical activity[J]. Physiol. Plant., 2004, 122(2):281-290
[35]  Kochubey S M, Adamchuk N I, Kordyum E I, et al. Microgravity affects the photosynthetic apparatus of Brassica rapa L[J]. Plant Biosyst., 2004, 138(1):1-9
[36]  Cook M E, Croxdale J G. Ultrastructure of potato tubers formed in microgravity under controlled environmental conditions[J]. J. Exp. Bot., 2003, 54(390):2157-2164
[37]  Croxdale J M, Cook M E, Tibbitts T W, et al. Structure of potato tubers formed during spaceflight[J]. J. Exp. Bot., 1997, 48:2037-2043
[38]  Vaughn M W, Harrington G N, Bush D R. Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem[J]. PNAS, 2002, 99(16):10876-10880
[39]  Leslie S B, Israeli E, Lighthart B, et al. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying[J]. Appl. Enviro. Microbiol., 1995, 61(10):3592-3597
[40]  Reed R H, Richardson D L, Warr S L, et al. Carbohydrate accumulation and osmotic stress in cyanobacteria[J]. J. Gen. Microbiol., 1984, 130:5-25
[41]  Strom A R, Kaasen I. Trehalose metabolism in Escherichia coli}: stress protection and stress regulation of gene expression[J]. Mol. Microbiol., 1993, 8:205-210
[42]  Brown R, Klaus D, Todd P. Effects of space flight, clinorotation, and centrifugation on the substrate utilization efficiency of E.coli[J]. Micrograv. Sci. Tech., 2001, 13:24-29
[43]  Nechitailo G S, Yurov S, Cojocaru A, et al. Spectrophotometric analysis of tomato plants produced from seeds exposed under space flight conditions for a long time[C]//37th COSPAR Scientific Assembly. Montréal, Canada: COSPAR, 2008. 2191
[44]  Guerin M, Huntley M E, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition[J]. Trends Biotechnol., 2003, 21(5):210-216
[45]  Todd L R, Cysewski G R. Commercial potential for Haematococcus} microalgae as a natural source of astaxanthin[J]. Trends Biotechnol., 2000, 18(4):160-167
[46]  Kobayashi M. Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis[J]. Biotech. Bioproc. Engin., 2003, 8}:322-330

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133