全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

北京地区重力波活动及其波谱的季节分布特性研究

DOI: 10.11728/cjss2015.04.453, PP. 453-460

Keywords: 激光雷达,Na层,重力波,季节分布,青藏高原地形及对流

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用激光雷达对北京地区上空Na层进行持续观测,通过连续三年累积的夜间观测数据对北京地区重力波活动及其波谱进行研究.根据重力波的线性理论计算,得到北京地区上空的大气密度扰动规律、空间功率谱和时间频率谱.通过选择重力波波长在1~8km,具有特定波长以及特定周期为60,45,25min的重力波活动辅助研究重力波的季节变化规律,结果表明北京地区重力波大气密度扰动具有夏季大、冬季小的活动规律.结合波源与背景风场的季节性变化规律,分析得出北京上空重力波活动季节性变化的主要原因为青藏高原地形和对流因素与我国北方地区季节性背景风场共同作用的结果.

References

[1]  She C Y, Yu J R, Huang J W, et al. Na temperature lidar measurements of gravity wave perturbations of wind, density and temperature in the mesopause region[J]. Geophys. Res. Lett., 1991, 18(7):1329-1331
[2]  Senft D C, Gardner C S. Seasonal variability of gravity wave activity and spectra in the mesopause region at Urbana[J]. J. Geophys. Res., 1991, 96(D9):17229-17264
[3]  Gardner C S, Voelz D Z. Lidar studies of the nighttime sodium layer over Urbana, Illinois: 2. Gravity waves[J]. J. Geophys. Res., 1987, 92(A5):4673-4693
[4]  Gardner C S. Diffusive filtering theory of gravity wave spectra in the atmosphere[J]. J. Geophys. Res., 1994, 99(D10):20601-20622
[5]  Gardner C S. Testing theories of atmospheric gravity wave saturation and dissipation[J]. J. Atoms. Sol.-Terr. Phys., 1996, 58:1575-1589
[6]  Yang G, Clemesha B, Batista P, et al. Gravity wave parameters and their seasonal variations derived from Na lidar observations at 23°S[J]. J. Geophys. Res., 2006, 111, D21107
[7]  Zhang Tiemin, Wang Jihong, Fu Jun, et al. Study of sodium layer density over Haikou by lidar during the night of 4 May 2010[J]. Chin. J. Space Sci., 2013, 33(1):48-52. in Chinese (张铁民, 王继红, 傅军, 等. 2010年5月4日夜间海口上空钠层密度的激光雷达观测研究[J]. 空间科学学报, 2013, 33(1):48-52)
[8]  Yang G, Clemesha B, Batista P, et al. Improvement in the technique to extract gravity wave parameters from lidar data[J]. J. Geophys. Res., 2008, 113: D19111
[9]  Yang G, Clemesha B, Batista P, et al. Lidar study of the characteristics of gravity waves in the mesopause region at a southern low-latitude location[J]. J. Atoms. Sol.-Terr. Phys., 2008, 70(7):991-1011
[10]  Tsuda T, Inoue T, Fritts D, et al. MST radar observations of a saturated gravity wave spectrum[J]. J. Atmos. Sci., 1985, 46(15):2440-2447
[11]  Dewan E M. The saturated-cascade model for atmospheric gravity wave spectra and the Wavelength-Period (W-P) relations[J]. Geophys. Res. Lett., 1994, 21(9):817-820
[12]  Hines C O. The saturation of gravity waves in the middle atmosphere: Part II. Development of Doppler-spread theory[J]. J. Atmos. Sci., 1991, 48(11):1360-1379
[13]  Senft, D C, Hostetler C A, Gardner C S. Characteristics of gravity wave activity and spectra in the upper stratosphere and upper mesosphere at Arecibo during early April 1989[J]. J. Atmos. Terr. Phys., 1993, 55(3):425-439
[14]  Collins R L, Nomura A, Gardner C S. Gravity waves in the upper mesosphere over Antarctica: lidar observations at the South Pole and Syowa[J]. Geophys. Res. Lett., 1994, 99(D3):5475-5485
[15]  Beatty T J, Hostetler C A, Gardner C S. Lidar observations of gravity wave and their spectra near the mesopause and stratopause at Arecibo[J]. J. Atoms. Sci., 1992, 49(6):477-496
[16]  Gong S H, Yang G T, Xu J Y, et al. Statistical characteristics of atmospheric gravity wave in the mesopause region observed with a sodium lidar at Beijing, China[J]. J. Atoms. Sol.-Terr. Phys., 2013, 97:143-151
[17]  Long R R. Some aspects of the flow of stratified fluids: III. Continuous density gradients[J]. Tellus, 1955, 7(3):341-357
[18]  Sato K. Small-scale wind disturbances observed by the MU radar during the passage of typhoon Kelly[J]. J. Atoms. Sci., 1993, 50(4):518-537
[19]  Sato K. A statistical study of the structure, saturation and sources of inertio-gravity waves in the lower stratosphere observed with the MU radar[J]. J. Atoms. Terr. Phys., 1994, 56(6):755-774
[20]  Smith R B. On severe downslope winds[J]. J. Atmos. Sci., 1985, 42(23):2597-2603
[21]  Tsuda T, Murayama Y, Nakamura T, et al. Variations of the gravity wave characteristics with height, season, and latitude revealed by comparative observations[J]. J. Atmos. Terr. Phys., 1994, 56(5):555-568
[22]  Alexander M, Pfister L. Gravity wave momentum flux in the lower stratosphere over convection[J]. Geophys. Res. Lett., 1995, 22(15):2029-2032
[23]  Farmer D, Armi L. Stratified flow over topography: The role of small-scale entrainment and mixing in flow establishment[J]. Proc. R. Soc. London Ser.: A, 1999, 455(1989):3221-3258
[24]  Wan W, Yuan, H, Ning B, et al. Traveling ionospheric disturbances associated with the tropospheric vortexes around Qinghai-Tibet Plateau[J]. Geophys. Res. Lett., 1998, 25(20):3775-3778
[25]  Xu G, Wan W, She C, et al. The relationship between ionospheric Total Electron Content (TEC) over East Asia and the tropospheric circulation around the Qinghai-Tibet Plateau obtained with a partial correlation method[J]. Adv. Space Res., 2008, 42(1):219-223
[26]  Zhang, S D, Yi F. Latitudinal and seasonal variations of inertial gravity wave activity in the lower atmosphere over central China[J]. J. Geophys. Res., 2007, 112:D05109

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133