全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

AUSM系列算法对比研究及背景太阳风初步应用

DOI: 10.11728/cjss2015.04.393, PP. 393-402

Keywords: AUSM系列算法,HDC方法,日冕模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

磁流体力学数值模拟是研究日地物理学现象的一个重要手段.对比三种AUSM算法,即AUSM,AUSM+和AUSMPW+,结合HDC磁场散度消去方法计算多维MHD问题的性能.通过分析三种算法计算Rotor算例和Orszag-Tangvortex算例的结果发现,AUSM+算法的性能最好.进一步使用AUSM+算法基于6片网格构造模拟了日冕结构,计算结果表明这种算法能够正确计算出日冕的大尺度结构.对于日冕结构模拟块,HDC方法能够较好地控制磁场散度误差.

References

[1]  Lyon J, Fedder J, Mobarry C. The Lyon-Fedder-Mobarry (LFM) global MHD magnetospheric simulation code[J]. J. Atmos. Sol-Terr. Phys., 2004, 66(15-16):1333-1350
[2]  Pizzo V, Millward G, Parsons A et al. Wang-Sheeley-Arge-Enlil Cone Model transitions to operations[J]. Space Weather, 2010, 9:S03004
[3]  Tóth G. The ▽ · B=0 constraint in shock-capturing magnetohydrodynamics codes[J]. J. Comp. Phys., 2000, 161(2):605-652
[4]  Brackbill J U, Barnes D C. The effect of nonzero ▽ · B on the numerical solution of the magnetohydrodynamic equations[J]. J. Comp. Phys., 1980, 35(3):426-430
[5]  Evans C R, Hawley J F. Simulation of magnetohydrodynamic flows -- A constrained transport method[J]. Ap. J., 1988, 332:659-677
[6]  Powell K G. An approximate Riemann solver for magnetohydrodynamics//Upwind and High-Resolution Schemes[M]. Berlin: Springer-Verlag, 1994:570-583
[7]  Dedner A, Kemm F, Kroner D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. J. Comp. Phys., 2002, 175(2):645-673
[8]  Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. J. Comp. Phys., 1997, 135(2):250-258
[9]  Van Leer B. Flux-vector splitting for the Euler equations[C]//Eighth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics. Berlin: Springer-Verlag, 1982:507-512
[10]  Steger J L, Warming R F. Flux vector splitting of the inviscid gas dynamic equation with application to finite-difference methods[J]. J. Comp. Phys,, 1981, 40(2):263-293
[11]  Rossow C-C. A flux-splitting scheme for compressible and incompressible flows[J]. J. Comp. Phys., 2000, 164(10):104-122
[12]  Liou M S, Steffen C J. A new flux splitting scheme[J]. J. Comp. Phys., 1993, 107(1):23
[13]  Liou M S. A Sequel to AUSM[J]. J. Comp. Phys., 1996, 129(4):364-382
[14]  Edwards J R. A low-diffusion flux-splitting scheme for Navier-Stokes calculations[J]. Comp. Fluids, 1997, 26(6): 653
[15]  Jameson A. Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flow[R], AIAA Paper, 1993-3359. Reston: AIAA, 1993
[16]  Agarwal R, Augustinus J. A comparative study of advection upwind split (AUSM) and wave/particle split (WPS) schemes for fluid and MHD flows[R], AIAA Paper 1999-3613. Reston: AIAA, 1999
[17]  Pan Y, Wang J F, Wu Y W. Upwind scheme for ideal 2-D MHD flows based on unstructured mesh[J]. Trans. Nanjing Univ. Aeron. Astron., 2007, 24(1):1-7
[18]  Han S H, Lee J I, Kim K H. Accurate and robust pressure weight advection upstream splitting method for magnetohydrodynamics equations[J]. AIAA J., 2009, 47(5):970-981
[19]  Munz C D, Schneider R, Sonnendrucker E, et al. Maxwell''s equations when the charge conservation is not satisfied[J]. Comp. Ren. Acad. Sci.: Math., 1999, 328(5):431-436
[20]  Munz C D, Omnes P, Schneider R, E. et al. Divergence correction techniques for Maxwell solvers based on a hyperbolic model[J]. J. Comp. Phys. 2000, 161(2):484-511
[21]  Zhang Deliang. A Course in Computational Fluid Dynamics[M]. Beijing: Higher Education Press, 2010. In Chinese (张德良. 计算流体力学教程[M]. 北京: 高等教育出版社, 2010)
[22]  Balsara D S, Spicer D S. A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations[J]. J. Comp. Phys., 1999, 149(2):270-292
[23]  Shen Y, Zha G, Huerta M A. E-CUSP scheme for the equations of ideal magnetohydrodynamics with high order WENO scheme[J]. J. Comp. Phys., 2012, 231(19):6233-6247
[24]  Feng X S, Yang L P, Xiang C Q, et al. Three-dimensional solar wind modeling from the Sun to Earth by a SIP-CESE MHD model with a six-component grid[J]. Ap. J., 2010, 723:300-319
[25]  Parker E N. Dynamical theory of the solar wind[J]. Space Sci. Rev., 1965, 4(5/6):666-708
[26]  Feng X, Zhou Y, Wu S T. A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method[J]. Ap. J., 2007, 655(2):1110-1126
[27]  Yang L P, Feng X S, Xiang C Q, et al. Time-dependent MHD modeling of the global solar corona for year 2007: Driven by daily-updated magnetic field synoptic data[J]. J. Geophys. Res., 2012, 117(A8):1101-1024
[28]  Riley P, Lionello R, Linker J A et al. Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval[J]. Solar Phys., 2010, 274(1/2):361-377
[29]  Shen F, Shen C,Wang Y et al. Could the collision of CMEs in the heliosphere be super-elastic? Validation through three-dimensional simulations[J]. Geophys. Res. Lett., 2013, 40(8):1457-1461

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133