全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

LED光谱对模拟空间培养箱中植物生长发育的影响

DOI: 10.11728/cjss2015.04.473, PP. 473-485

Keywords: 空间植物培养,拟南芥,水稻,LED,红蓝光,微重力

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过研究在空间植物培养箱中利用LED作为光源对植物生长发育的作用,并以荧光灯作为对照,评估LED光源在空间植物培养中的优缺点,可为中国即将在空间实验室天宫二号和空间站中开展的高等植物生长实验提供参考.利用不同比例的红光与白光LED组合光源,研究光谱组成(红蓝光比例)、光照强度、光周期和气体流通等条件对于模拟空间植物培养箱中拟南芥和水稻生长发育的影响.结果表明,与荧光灯相比,红蓝光比例高的LED会导致拟南芥提早开花和水稻叶片的早衰.红蓝光峰值比在3.9左右时,拟南芥和水稻生长最为有利;红蓝光峰值比超过16则明显抑制拟南芥和水稻的生长,导致叶片早衰.另外,在密闭培养箱中,光强小于150μmol·m-2·s-1时,增加光照强度可以部分抵消气体流通不足导致拟南芥植物生长的抑制,而光照强度大于150μmol·m-2·s-1时,光强越大拟南芥的生长发育受到抑制越严重.水稻对密闭培养环境中高光强的耐受性明显好于拟南芥.因此,在设计空间植物培养箱的LED光照系统时,红蓝光的比例选择是关键,此外还需综合考虑空间微重力条件下气体对流变化影响植物对光的反应.

References

[1]  Britz S J, Sager J C. Photomorphogenesis and photoassimilation in soybean and sorghum grown under broad spectrum or blue-deficient light sources[J]. Plant Physiol., 1990, 94(2):448-454
[2]  Barnes C, Bugbee B. Morphological responses of wheat to blue light[J]. J. Plant. Physiol., 1992, 139(3):339-342
[3]  Krizek D T, Mirecki R M, Britz S J, et al. Spectral properties of microwave-powered sulfur lamps in comparison to sunlight and high pressure sodium/metal halide lamps[J]. Biotronics, 1998, 27(1):69-80
[4]  Goins G D, Yorio N C, Sanwo M M, et al. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting[J]. J. Exp. Bot., 1997, 48(5):1407-1413
[5]  Terashima I, Fujita T, Inoue T, et al. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green[J]. Plant Cell Physiol., 2009, 50(4):684-697
[6]  Fan X X, Xu Z G, Liu X Y, et al. Effect of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light[J]. Sci. Hort., 2013, 153:50-55
[7]  Lin K H, Huang M Y, Huang W D, et al. The effects of red, blue and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. Var. Capitata)[J]. Sci. Hort., 2013, 150:86-91
[8]  Buschmann C, Meier D, Kleudgen H K. Regulation of chloroplast development by red and blue light[J]. Photochem. Photobiol., 1978, 27(2):195-198
[9]  Leong T Y, Anderson J M. Effect of light quality on the composition and function of thylakoid membranes in Atriplex triangularis[J]. Biochem. Biophys. Acta, 1984, 766(3):533-541
[10]  Kuang A, Xiao Y, McClure G, Musgrave M E. Influence of microgravity on ultrastucture and storage reserves in seeds of Brassica rapa L[J]. Ann. Bot., 2000, 85(6):851-859
[11]  Paul A L, Daugherty C J, Bihn E A, et al. Transgene expression patterns indicate that space-flight affects stress signal perception and transduction in Arabidopsis[J]. Plant Physiol., 2001, 126(2):613-621
[12]  Johnson A, Solheim B G, Iversen T H. Gravity amplifies and microgravity decreases circumnutations in Arabidopsis thaliana stems: Results from a space experiment[J]. New Phytol., 2009, 182(3):621-629
[13]  Zheng H Q, Wang H, Wei N, et al. Live imaging technique for studies of growth and development of Chinese cabbage under microgravity in a recoverable satellite (SJ-8)[J]. Microgr. Sci. Tech., 2008, 20(1):137-143
[14]  Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiol. Plant., 1962, 15(3):473-497
[15]  Ni Jinshan. Experimental Handbook of Plant Physiology. Shanghai: Shanghai Science and Technology Press, 1985:63-66. In Chinese (倪晋山. 植物生理学实验手册[M]. 上海: 上海科学技术出版社, 1985:63-66)
[16]  Cosgrove D J. Rapid suppression of growth by blue light. Occurrence, time-course, and general characteristics[J]. Plant Physiol., 1981, 67(3):584-590
[17]  Mohr H. Blue Light Responses: Phenomena and Occurrence in Plants and Microorganisms[M]. Florida: CRC Press, 1987:133-144
[18]  Islam M A, Kuwar G, Clarke J L, Blystad D R, et al. Artificial light from Light Emitting Diodes (LEDs) with a high portion of blue light results in shorter poinsettias compared to High Pressure Sodium (HPS) lamps[J]. Sci. Hort., 2012, 147:136-143
[19]  Xu Guoxin, Zhang Yue, Wei Xiaojing, et al. Analysis of seed development of Arabidopsis plants under a 3D clinostat rotated condition[J]. Chin. J. Space Sci., 2012, 32(2):230-237. In Chinese (徐国鑫, 张岳, 魏晓静, 郑慧琼. 三维回转器回旋条件下拟南芥种子发育分析[J]. 空间科学学报, 2012, 32(2):230-237)
[20]  Monje O, Stutte G W, Goins G D, et al. Faming in space: environmental and biophysical concerns[J]. Adv. Space Res., 2003, 31(1):151-167
[21]  Wheeler R M, Tibbitts T W. Influence of changes in daylength and carbon dioxide on the growth of potato[J]. Ann. Bot., 1997, 79(5):529-533
[22]  Wheeler R M, MacKowiak C L, Stutte G W, et al. NASA''s biomass production chamber: A testbed for bioregenerative life support studies[J]. Adv. Space Res., 1996, 18(4):215-224
[23]  Muneer S, Kim E J, Park J S, et al. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves ( Lactuca sativa L.)[J]. Int. J. Mol. Sci., 2014, 15(3):4657-4670

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133