全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微重力下胶原蛋白纤维化及羟基磷灰石结晶的初步研究

DOI: 10.11728/cjss2015.03.330, PP. 330-335

Keywords: 模拟微重力,胶原蛋白,纤维化,晶体生长

Full-Text   Cite this paper   Add to My Lib

Abstract:

在长期空间飞行过程中,骨质丢失是一个严重问题.羟基磷灰石(HAP)晶体是骨骼的主要成分,骨骼中的胶原蛋白纤维在HAP生长结晶过程中起到关键作用.研究了胶原蛋白纤维化过程在模拟微重力和常重力条件下的变化,对以胶原蛋白纤维作为模板生长出的HAP晶体形貌进行了观察.结果表明,不同浓度胶原蛋白溶液中形成的胶原蛋白纤维,其内部孔隙数量和尺寸在模拟微重力条件下要明显大于常重力条件下,胶原蛋白纤维内部孔隙的分布也不同于常重力条件下的结果.以模拟微重力条件下形成的胶原蛋白纤维为模板生长出的HAP晶体主要为立方体状,而以常重力条件下形成的胶原蛋白纤维为模板生长出的HAP晶体形貌主要为板状.该结果有助于未来进一步阐明空间骨质丢失的机理.

References

[1]  Sun Lianwen, Zhuang Fengyuan. Research progress of microgravity induced osteopenia[J]. Chin. J. Aerospace Med., 2004, 15(1):54-58. In Chinese (孙联文, 庄逢源. 微重力导致航天员骨质疏松的研究进展[J]. 中华航空航天医学杂志, 2004, 15(1):54-58)
[2]  Stetlerstevenson W G, Veis A. Type-I collagen shows a specific binding-affinity for bovine dentin phosphophoryn[J]. Calcified Tissue Int., 1986, 38(3):135-141
[3]  Stetlerstevenson W G, Veis A. Bovine dentin phosphophoryn-calcium-ion binding-properties of a high-molecular-weight preparation[J]. Calcified Tissue Int., 1987, 40(2):97-102
[4]  Nudelman F, Lausch A J, Sommerdijk N A J M, Sone E D. In vitro models of collagen biomineralization[J]. J. Struc. Biol., 2013, 183:258-269
[5]  Nudelman F, Pieterse K, George A, Bomans P H H, et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors[J]. Nat. Mat., 2010, 9:1004-1009
[6]  Hulmes D J S, Wess T J, Prockop D J, Fratzl P. Radial packing, order, and disorder in collagen fibrils[J]. Biophys., 1995, 68(5):1661-1670
[7]  Traub W, Arad T, Weiner S. 3-dimensional ordered distribution of crystals in turkey tendon collagen-fibers[J]. Proc. Natl. Acad. Sci. USA, 1989, 86(24):9822-9826
[8]  Landis W J, Jacquet R. Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues[J]. Calcified Tissue Int., 2013, 93(3):329-337
[9]  Cui Wei. Mechanism of bone mineral loss in microgravity[J]. Prog. Phys. Sci., 1998, 29(1): 84-86. In Chinese (崔伟. 微重力条件下骨矿盐丢失机理[J]. 生理科学进展, 1998, 29(1): 84-86)
[10]  John P, Karl E, Brass A. Simple physical model of collagen fibrillogenesis based on diffusion limited aggregation[J]. J. Mol. Biol., 1995, 247(4):823-831
[11]  John P, Karl E, Andy B. Self-assembly of rodlike particles in two dimensions: A simple model for collagen fibrillogenesis[J]. Phys. Rev., 1994, 50(4):2963-2966
[12]  Roedersheimer M T, Bateman T A, Simske S J. Effect of gravity and diffusion interface proximity on the morphology of collagen gels[J]. J. Biomed. Mater. Res., 1997, 37(2):276-281
[13]  Oyane A, Kim H M, Furuya T, et al. Preparation and assessment of revised simulated body fluids[J]. J. Biomed. Mater. Res.: Part A, 2003, 65A(2):188-195
[14]  Benedetto M, Chiara E G, Jake E B, Showan N N. Collagen gel fibrillar density dictates the extent of mineralization in vitro[J]. Soft Matter, 2011, 7(21):9898-9907
[15]  Oaki Y, Imai H. Experimental demonstration for the morphological evolution of crystals grown in gel media[J]. Cryst. Growth Des., 2003, 3(5):711-716

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133