全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于SAMPEX卫星观测的南大西洋异常区高能质子动态分布特征

DOI: 10.11728/cjss2015.02.192, PP. 192-202

Keywords: 内辐射带,南大西洋异常区,磁暴,高能质子微分通量,F10.7指数

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用SAMPEX卫星1992年7月至2004年6月19~27MeV高能质子数据对南大西洋异常区的分布特征进行研究,发现南大西洋异常区高能质子分布随高度及F10.7的变化十分显著.在540±25km高度上,地磁较为平静时期南大西洋异常区高能质子微分通量随着F10.7的增大而减小,同时在F10.7≥115sfu时减小趋势较为平缓.对中等及以上磁暴进行统计分析发现,磁暴期间南大西洋异常区高能质子微分通量和SYM-H指数的绝对值存在明显的反相关关系,且地磁暴对南大西洋异常区高能质子微分通量存在明显的持续影响效应.磁暴发生期间高能质子微分通量明显减少.磁暴恢复相及其之后高能质子微分通量呈现较为显著的恢复过程.

References

[1]  Li X, Baker D N, Kanekal S G, et al. Long term measurements of radiation belts by SAMPEX and their variations[J]. Geophys. Res. Lett., 2001, 28(20):3827-3830
[2]  Shi Liqin, Lin Ruilin, Liu Siqing, et al. Effect of solar cycle activity on high energy proton of inner radiation belt in the low altitude region[J]. Chin. J. Space Sci., 2012, 32(6): 804-811
[3]  Miyoshi Y, Morioka A, Misawa H, et al. Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations[J]. J. Geophys. Res.: Space Phys., 2003, 108(A1): SMP 3-1-SMP 3-15
[4]  Looper M D, Blake J B, Mewaldt R A. Response of the inner radiation belt to the violent Sun-Earth connection events of October—November 2003[J]. Geophys. Res. Lett., 2005, 32 ; L030506, doi:10.1029/2004GL021502
[5]  Zou H, Zong Q G, Parks G K, et al. Response of high-energy protons of the inner radiation belt to large magnetic storms[J]. J. Geophys. Res.: Space Phys., 2011, 116, A10229
[6]  Ginet G P, O''Brien T P, Huston S L, et al. AE9, AP9 and SPM: New models for specifying the trapped energetic particle and space plasma environment[J]. Space Sci. Rev., 2013, 179(1-4):579-615
[7]  Meffert J D, Gussenhoven M S. CRRESPRO documentation[R]. Bedford, Massachusetts: Phillips Laboratory, Hanscom Air Force Base, 1994
[8]  Huston S L, Kuck G A, Pfitzer K A. Low altitude trapped radiation model using TIROS/NOAA data[J]. Geophys. Monog. Ser., 1996, 97:119-122
[9]  Boscher D M, Bourdarie S A, Friedel R H W, et al. Model for the geostationary electron environment: POLE[J]. IEEE Trans. Nucl. Sci., 2003, 50(6):2278-2283
[10]  Heynderickx D, Kruglanski M, Pierrard V, et al. A low altitude trapped proton model for solar minimum conditions based on SAMPEX/PET data[J]. IEEE Trans. Nucl. Sci., 1999, 46(6):1475-1480
[11]  Roeder J L, Chen M W, Fennell J F, et al. Empirical models of the low-energy plasma in the inner magnetosphere[J]. Space Weather, 2005, 3, S12B06
[12]  Hartmann G A, Pacca I G. Time evolution of the South Atlantic magnetic anomaly[J]. Anais Acad. Bras. Ciěnc., 2009, 81(2):243-255
[13]  Li Baoquan, Zhu Guangwu, Wang Shijing, et al. The space particle composition detector on board FY-1C satellite and the analysis of particle radiation in the South Atlantic Anomaly Region[J]. Chin. J. Geophys., 2004, 47(6):1074-1078
[14]  Liu Siqing, Liu Jing, Shi Linqin, et al. m Space environment support for the SZ-5 spacecraft[J]. Physics, 2004, 33(5):359-366
[15]  Badhwar G D. Drift rate of the South Atlantic anomaly[J]. J. Geophys. Res.: Space Phys., 1997, 102 (A2): 2343-2349
[16]  Hell N, Bamberg R S. The Evolution of the South Atlantic Anomaly Measured by RHESSI[M]. Erlangen-Nürnberg: Elangen Centre for Astroparticle Physics, Friedrich-Alexander-Universit?t, 2010
[17]  Pu Zuyin, Fang Xiaohua, Jiao Weixin. Study on inner radiation belt space climate[J]. Science China: A, 2000, 1:131-135
[18]  Lin C S, Yeh H C. Satellite observations of electric fields in the South Atlantic anomaly region during the July 2000 magnetic storm[J]. J. Geophys. Res.: Space Phys., 2005, 110, A03305
[19]  Asikainen T, Mursula K. Filling the South Atlantic anomaly by energetic electrons during a great magnetic storm[J]. Geophys. Res. Lett., 2005, 32(16):1-4
[20]  Asikainen T, Mursula K. Energetic electron flux behavior at low L-shells and its relation to the South Atlantic Anomaly[J]. J. Atmos. Solar-Terr. Phys., 2008, 70 (2):532-538
[21]  Barnes C E, Ott M N, Johnston A H, et al. Recent photonics activities under the NASA electronic parts and packaging (NEPP) program[C]//International Symposium on Optical Science and Technology. Seattle: International Society for Optics and Photonics, 2002:189-204
[22]  Wang Tongquan, Dai Hongyi, Shen Yongping, et al. Calculation of cosmic high energy proton induced single event upset rate[J]. J. Nat. Univ. Def. Tech., 2002, 24(2):11-13
[23]  Du Heng, Ye Zonghai. LEO spacecraft Space Environment Manual[M]. Beijing: National Defense Industry Press, 1996
[24]  Gu Shifen, Zang Zhenqun, Shi Linqin, et al. Study on SEU occurred on board of several space shuttles[J]. Chin. J. Space Sci., 1997, 18(3):253-260
[25]  Baker D N, Mason G M, Figueroa O, et al. An overview of the solar anomalous, and magnetospheric particle explorer (SAMPEX) mission[J]. IEEE Trans. Geosci. Remote Sens., 2014, 31(3):531-541
[26]  Hudson M K, Elkington S R, Lyon J G, et al. Simulations of radiation belt formation during storm sudden commencements[J]. J. Geophys. Res.: Space Phys., 1997, 102 (A7):14087-14102
[27]  Young S L, Denton R E, Anderson B J, et al. Magnetic field line curvature induced pitch angle diffusion in the inner magnetosphere[J]. J. Geophys. Res.: Space Phys., 2008, 113, A03210
[28]  Summers D, Thorne R M. Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms[J]. J. Geophys. Res.: Space Phys., 2003, 108, SMP2
[29]  He Zhaoguo. Research on the enhancements of energetic outer radiation belt electron fluxes driven by chorus wave during magnetic storm[D]. Changsha: Changsha University of Science and Technology, 2011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133