覃彬全,杨磊,付钟. 自动气象站防雷技术探析[J]. 气象水文海洋仪器,2006,3(8):8-11. TAN Binquan,YANG Lei,FU Zhong. Technical investigation for lightning protection at the automatic weather stations[J]. Meteorological Hydrological and Marine Instruments,2006,3(8):8-11.
[3]
许伟. 綦江自动气象站防雷关键技术应用.[D].重庆;重庆大学,2009.
[4]
徐兵. 基于ZigBee的自动气象站系统的设计[D]. 南京:南京信息工程大学大学,2008.
[5]
杨仲江,余蜀豫,程斌,等. 暂态电流和电位抬升对雷电风险参数Pc的影响[J]. 科技导报,2011(26):57-60. YANG Zhongjiang,YU Shuyu,CHENG Bin. Impact of transient current and ground potential rising on pcin lightning risk assessment[J]. Science & Technology Review,2011(26):57-60.
[6]
钟万强. 基于雷击分类体系的雷电电位差效应分析[J]. 气象科技,2010,38(6):758-760. ZHONG Wanqiang. Effect analysis of lightning potential difference based on lightning category system[J]. Meteorological Xcience and Technology,2010,38(6):758-760.
[7]
中国气象局. 自动气象站场室防雷技术规范QX30―2004[S]. 北京:气象出版社,2004.
[8]
梅卫群,江燕如. 建筑防雷工程与设计[M]. 北京:气象出版社,2009.
[9]
何金良,曾嵘. 电力系统接地技术[M]. 北京:科学出版社,2007.
[10]
AngRen,Qingquan Li,Ran Liu. The research of CDEGS in Defect Diagnosis for Grounding Grid.Applied Mechanics and Materials Vol[J]. 2014,492:443-446.
[11]
孙建新. 基于CDEGS的铁路接地网优化设计研究[J]. 水电能源科学,2010,28(6):132-135. SUN Jianxin. Application of CDEGS in designing grounding grids for railway power[J]. Water Resources and Power,2010,28(6):132-135.
[12]
周文乐. 大型接地网地面电位分布计算及改进[D]. 成都:西华大学,2010.
[13]
Chien-Hsing Lee,Cheng-Nan Chang. Comparison of the safety criteria used for ground grid design at 161/23.9-kV indoor-type substation[J]. Electrical Power and Energy Systems,2013(49):47-56.
[14]
杨廷方,张航,陈智翔,等. 圆环地网与方形地网冲击特性对比仿真[J]. 电瓷避雷器,2013,256(6):65-70. YANG Tingfang,ZHANG Hang,CHEN Zhixiang,et al. Simulation comparison on the impulse characteristic of ring and the square ground grid[J]. Insulators and Surge Arresters,2013,256(6):65-70.
[15]
庄池杰,曾蝾. 高土壤电阻率地区变电站接地网设计思路[J]. 高电压技术,2008(05):893―897. ZHUANG Chijie,ZENG Rong. Grounding system design method in high soil resistivity regions[J]. High Voltage Engineering,2008(5):893-897.