全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2010 

纳米多孔Pt,PtRu及PtRuIr催化剂的电化学FTIR光谱之比较(英文)

, PP. 263-272

Keywords: 电催化作用,甲醇氧化,电化学FTIR,纳米多孔PtRuIr

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,致力于Pt基电催化剂在燃料电池中的应用已取得显著成果.但随贵金属(如Pt)成本的增加,提高催化剂的活性以及降低负载量的需求也日益迫切.为此,作者合成并比较了纳米多孔Pt,PtRu及PtRuIr3种电催化剂.以扫描电镜(SEM)、能量色散谱(EDS)、X射线衍射(XRD)和X射线光电子能谱(XPS)表征水热法制得的纳米多孔电极.CO汽提实验和甲醇氧化反应测试上述纳米多孔材料的电催化活性.结果表明,添加Ir极大改善纳米多孔PtRu的活性.采用现场电化学FTIR光谱技术研究纳米多孔Pt,PtRu及PtRuIr电极上的甲醇氧化反应,以进一步揭示这种显著增强效应的成因.

References

[1]  Liu H,Zhang L,Zhang J,et al. A review of anode cataly- sis in the direct methanol fuel cell[J]. J of Power Sources,2006,155: 95-110.
[2]  Chen A,Holt-Hindle P. Platinum-based nanostructured materials: Synthesis,properties and applications[J]. Chem Rev,2010,110: 3767-3804.
[3]  Yajima T,Uchida H,Watanabe M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy[J]. J Phys Chem B,2004,108: 2654-2659.
[4]  Tian N,Zhou Z Y,Sun S G,et al. Synthesis of tetrahexa- hedral platinum nanocrystals with high-index facets and figh electro-oxidation activity[J]. Science,2007,316: 732-735.
[5]  Xia M,Wang Q,Eikerling M,et al. Effectiveness factor of Pt utilization in cathode catalyst layer of polymer e- lectrolyte fuel cells[J]. Can J Chem,2008,86: 657- 667.
[6]  Peng X,Koczkur K,Chen A. Synthesis and characteriza- tion of ruthenium decorated nanoporous platinum materi- als[J]. Nanotechnology,2007,18: 305605.
[7]  Jiang L H,Sun G Q,Sun S G,et al. Structure and chem- ical composition of supported Pt-Sn electrocatalysts for ethanol oxidation[J]. Electrochim Acta,2005,50,5384- 5389.
[8]  Jayaraman S,Jaramillo T F,Baeck S H,et al. Synthesis and characterization of Pt-WO3 as methanol oxidation catalysts for fuel cells[J]. J Phys Chem B,2005,109: 22958-22966.
[9]  Raychowdhury C,Matsumoto F,Zeldovich V B,et al. Synthesis,characterization,and electrocatalytic activity of PtBi and PtPb nanoparticles prepared by borohydride reduction in methanol[J]. Chem Mater,2006,18: 3365- 3372.
[10]  Koczkur K,Yi Q,Chen A. Nanoporous Pt-Ru networks and their electrocatalytical properties[J]. Adv Mater, 2007,19: 2648-2652.
[11]  Basnayake R,Li Z,Lakshmi S,et al. PtRu nanoparticle electrocatalyst with bulk alloy properties prepared through a sonochemical method[J]. Lang,2006,22: 10446-10450.
[12]  Holt-Hindle P,Yi Q,Wu G,et al. Electrocatalytic ac-tivity of nanoporous Pt-Ir materials towards methanol oxidation and oxygen reduction[J]. J Electrochem Soc, 2008,155,K5-K9.
[13]  Holt-Hindle P,Nigro S,Asmussen R M,et al. Ampero- metric glucose sensor based on Pt-Ir nanomaterials [J]. Electrochem Commun,2008,10: 1438-1441.
[14]  Yan Y G,Li Q X,Huro S J,et al. Ubiquitous strategy for probing ATR surface - enhanced infrared absorption at platinum group metal-electrolyte interfaces[J]. J Phys Chem B,2005,109: 7900-7906.
[15]  Gasteiger H A,Markovic N,Ross Jr P N,et al. Metha- nol electrooxidation on well characterized Pt-Ru alloys [J]. J Phys Chem,1993,97: 12020-12029.
[16]  Arico A S,Antonucci P L,Modica E,et al. Effect of Pt- Ru alloy composition on high-temperature methanol e-lectro-oxidation[J]. Electrochim Acta,2002,47: 3723- 3732.
[17]  Wagner C D,Riggs W M,Davis L E,et al. Handboook X-ray photoelectron spectroscopy[M]. Perkin-Elmer Co,1979.
[18]  Aric A S,Creti P,Kim H,et al. Analysis of the electro- chemical characteristics of a direct methanol fuel cell based on a Pt-Ru/C anode catalyst[J]. J Electrochem Soc,1996,143: 3950-3959.
[19]  Chen Y A,Ye S,Heinen M,et al. Application of in-situ attenuated total reflection-Fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: Formic acid oxidation on a Pt film electrode at elevated temperatures[J]. J Phys Chem B,2006,110: 9534-9544.
[20]  Casado-Rivera E,Volpe D J,Alden L,et al. Electrocat- alytic activity of ordered intermetallic phases for fuel cell applications[J]. J Am Chem Soc,2004,126: 4043- 4049.
[21]  Yeager E,Bockris J O,Conway B E,et al. Comprehen- sive treatise of electrochemistry,Electrodics: Experi- mental Techniques[M]. Vol. 9,Plenum Press,New York,1984.
[22]  Wang J,Adams B,Asmussen R M,et al. Facile synthe- sis and electrochemical Properties of Intermetallic PtPb Nanodendrites[J]. Chem Mater,2009,21: 1716-1724.
[23]  Lu G Q,Sun S G,Cai LR,et al. In situ FTIR spectro- scopic studies of adsorption of CO,SCN - ,and poly( o- phenylenediamine) on electrodes of nanometer thin films of Pt,Pd,and Rh: Abnormal infrared effects ( AI- REs) [J]. Lang,2000,16: 778-786.
[24]  Sun S G,Chen A C. in-situ FTIRS Features during oxy- gen-adsorption and carbon-monoxide oxidation at a platinum electrode in dilute alkaline solutions[J]. J Electroanal Chem,1992,323: 319-328.
[25]  Sun S G,Christensen P A,Wieckowski A. In-situ spec- troscopic studies of adsorption at the electrode and electrocatalysis,Elsevier,Netherlands 2007.
[26]  Wang J,Holt-Hindle P,MacDonald D,et al. Synthesis and electrochemical study of Pt-based nanoporous ma- terials[J]. Electrochim Acta,2008,53: 6944-6951.
[27]  Chen A,Lipkowski J. Electrochemical and spectroscop- ic studies of hydroxide adsorption at the Au( 111) e- lectrode[J]. J Phys Chem B,1999,103: 682-691.
[28]  Ioroi T,Yasuda K. Platinum-iridium alloys as oxygen reduction electrocatalysts for polymer electrolyte fuel cells[J]. J Electrochem Soc,2005,152: A1917-1924.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133