全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2011 

介孔碳基钴镍氧化物的电化学电容性能

, PP. 217-221

Keywords: 超级电容器,钴镍氧化物,交错纳米片网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

以介孔碳CMK-3为载体,利用CMK-3表面缺陷作形核中心,应用前驱体化学液相共沉淀法制备新型的Co0.25Ni0.75氧化物/CMK-3复合材料.X射线衍射(XRD)分析及扫描电子显微镜(SEM)形貌观察表明该材料主要呈现弱结晶态结构,其中Co-Ni氧化物纳米片交错成空间网络并包覆在介孔碳表面.BET测试表明该材料孔径分布在3~4nm之间,且高分散、疏松多孔,具有良好的OH-离子传递特性.循环伏安和恒流充放电测试表明,该材料有高的电化学活性,在5mA/cm2电流密度下,Co0.25Ni0.75氧化物(92%)/C比电容达1781F/g.

References

[1]  An K H, Kim W S, Park Y S, et al. Supercapacitors using single-walled carbon nanotube electrodes [J]. Adv Mater, 2001, 13: 497-500.
[2]  Kim C. Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors [J]. J. Power Sources, 2005, 142: 382-388.
[3]  Kong L B, Lang J W, Liu M, et al. Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors [J]. J Power Sources, 2009, 194: 1194-1201.
[4]  Liang Y Y, Cao L, Kong L B, et a1. Synthesis of Co(OH)2/USY composite and its application for electrochemical supercapacitors [J]. J Power Sources, 2004, 136: 197-200.
[5]  Fan L Z, Hu Y S, Maier J, et a1.High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support [J]. Adv Funct Mater, 2005, 17: 3083-3087.
[6]  Ghosh S, Inganas O. Conducting polymer hydrogels as 3D electrodes:applications for suparcapacitors[J]. Adv Mater, 1999, 11: 1214-1218.
[7]  Wang Y G, Li H Q, Xia Y Y. Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance [J]. Adv Mater, 2006, 18: 2619-2623.
[8]  Wang D W, Li F, Liu M. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage [J]. Angew Chemie Int Edit, 2008, 120: 379-382.
[9]  Long J W, Dunn B, Rolison D R, et al. Three-dimensional battery architectures [J]. Chem Rev, 2004, 104: 4463-4492.
[10]  Shan Y, Gao L. Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors [J]. Mater Chem Phys, 2007, 103: 206-210.
[11]  Lee J Y, Liang K, An K H, et al. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance [J]. Synth Met, 2005, 150: 153-157.
[12]  Nam K W, Kim K H, Lee E S, et al. Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates [J]. J Power Sources, 2008, 182: 642-652.
[13]  Zheng Z, Huang L, Zhou Y, et al. Large-scale synthesis of mesoporous CoO-doped NiO hexagonal nanoplatelets with improved electrochemical performance [J]. Solid State Sciences, 2009, 11: 1439-1443.
[14]  Zhao D Y, Feng J L, Huo Q H, et al. Triblock copolymer syntheses of mesoporous silica with Periodic 50 to 300 angstrom pores [J]. Science, 1998, 279: 548-552.
[15]  Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. J Am Chem Soc, 2000, 122: 10712-10713.
[16]  Lang J W, Kong L B, Liu M, et al. A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors [J]. J Solid State Electrochem, 2009, 13: 333-340.
[17]  Li Q Y, Wang R N, Nie Z R, et al. Preparation and characterization of nanostructured Ni(OH)2 and NiO thin films by a simple solution growth process [J]. J Colloid and Interface Science, 2008, 320: 254-258.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133