全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2011 

锂离子电池正硅酸盐正极材料研究进展

, PP. 161-168

Keywords: 锂离子电池,正硅酸盐,结构,电化学性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

正硅酸盐正极材料因其高理论容量、高安全性能、低成本及环境友好等优点,近几年引起研究者的广泛关注.本文综述了国际上正硅酸盐材料最新研究进展.结合课题组在本领域的研究,着重从此类材料的合成方法、结构研究、电化学性能及反应机理研究等方面进行阐述.综合分析正硅酸盐材料各种合成方法的优缺点、结构研究存在的争议以及性能和机理研究上的难点,并分析及展望今后研究中亟待解决的问题和未来可能的发展方向.

References

[1]  Armstrong A R, Lyness C, Menetrier M, et al. Structural Polymorphism in Li2CoSiO4 Intercalation Electrodes: A Combined Diffraction and NMR Study [J]. Chem Mater, 2010, 22 (5): 1892-1900.
[2]  Gong Z L, Li Y X, Yang Y. Synthesis and characterization of Li2MnxFe1-xSiO4 as a cathode material for lithium-ion batteries [J]. Electrochem Solid State Lett, 2006, 9 (12): A542-A544.
[3]  Larsson P, Ahuja R, Nyten A, et al. An ab initio study of the Li-ion battery cathode material Li2FeSiO4 [J]. Electrochem Commun, 2006, 8 (5): 797-800.
[4]  Zaghib K, Salah A A, Ravet N, et al. Structural, magnetic and electrochemical properties of lithium iron orthosilicate [J]. J Power Sources, Journal of Power Sources, 2006, 160 (2): 1381-1386.
[5]  Dominko R, Bele M, Kokalj A, et al. Li2MnSiO4 as a potential Li-battery cathode material [J]. J Power Sources, 2007, 174 (2): 457-461.
[6]  Gong Z L, Li Y X, Yang Y. Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries [J]. J Power Sources, 2007, 174 (2): 524-527.
[7]  Kokalj A, Dominko R, Mali G, et al. Beyond one-electron reaction in Li cathode materials: Designing Li2MnxFe1-xSiO4 [J]. Chem Mater, 2007, 19 (15): 3633-3640.
[8]  Li Y X, Gong Z L, Yang Y. Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries [J]. J Power Sources, 2007, 174 (2): 528-532.
[9]  Lyness C, Delobel B, Armstrong A R, et al. The lithium intercalation compound Li2CoSiO4 and its behaviour as a positive electrode for lithium batteries [J]. Chem Commun, 2007 (46): 4890-4892.
[10]  Politaev V V, Petrenko A A, Nalbandyan V B, et al. Crystal structure, phase relations and electrochemical properties of monoclinic Li2MnSiO4 [J]. J Solid State Chem, 2007, 180 (3): 1045-1050.
[11]  Wu S Q, Zhang J H, Zhu Z Z, et al. Structural and electronic properties of the Li-ion battery cathode material LixCoSiO4 [J]. Current Applied Physics, 2007, 7 (6): 611-616.
[12]  Arroyo-DeDompablo M E, Dominko R, Gallardo-Amores J M, et al. On the energetic stability and electrochemistry of Li2MnSiO4 polymorphs [J]. Chem Mater, 2008, 20 (17): 5574-5584.
[13]  de Dompablo M, Gallardo-Amores J M, Garcia-Martinez J, et al. Is it possible to prepare olivine-type LiFeSiO4? A joint computational and experimental investigation [J]. Solid State Ionics, 2008, 179 (27-32): 1758-1762.
[14]  Dominko R. Li2MSiO4 (M = Fe and/or Mn) cathode materials [J]. J Power Sources, 2008, 184 (2): 462-468.
[15]  Gong Z L, Li Y X, He G N, et al. Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process [J]. Electrochem Solid State Lett, 2008, 11 (5): A60-A63.
[16]  Jayaprakash N, Kalaiselvi N, Periasamy P. A preliminary investigation into the new class of lithium intercalating LiNiSiO4 cathode material [J]. Nanotechnology, 2008, 19 (2): 025603.
[17]  Nishimura S I, Hayase S, Kanno R, et al. Structure of Li2FeSiO4 [J]. J Am Chem Soc, 2008, 130 (40): 13212-13213.
[18]  Yang Y, Fang H S, Li L P, et al. Synthesis and electrochemical performance of Li2MnSiO4/C composite cathode materials [J]. Rare Met Mater Eng, 2008, 37 (6): 1085-1088.
[19]  Belharouak I, Abouimrane A, Amine K. Structural and Electrochemical Characterization of Li2MnSiO4 Cathode Material [J]. J Phys Chem C, 2009, 113 (48): 20733-20737.
[20]  Deng C, Zhang S, Yang S Y. Effect of Mn substitution on the structural, morphological and electrochemical behaviors of Li2Fe1-xMnxSiO4 synthesized via citric acid assisted sol-gel method [J]. J Alloys Comp, 2009, 487 (1-2): L18-L23.
[21]  Dominko R, Arcon I, Kodre A, et al. In-situ XAS study on Li2MnSiO4 and Li2FeSiO4 cathode materials [J]. J Power Sources, 2009, 189 (1): 51-58.
[22]  Hu G R, Cao Y B, Peng Z D, et al. Preparation of Li2FeSiO4 Cathode Material for Lithium-Ion Batteries by Microwave Synthesis [J]. Acta Phys Chim Sin, 2009, 25 (5): 1004-1008.
[23]  Kuganathan N, Islam M S. Li2MnSiO4 Lithium Battery Material: Atomic-Scale Study of Defects, Lithium Mobility, and Trivalent Dopants [J]. Chem Mater, 2009, 21 (21): 5196-5202.
[24]  Li L M, Guo H J, Li X H, et al. Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode [J]. J Power Sources, 2009, 189 (1): 45-50.
[25]  Zhang S, Deng C, Yang S Y. Preparation of Nano-Li2FeSiO4 as Cathode Material for Lithium-Ion Batteries [J]. Electrochem and Solid State Lett, 2009, 12 (7): A136-A139.
[26]  Aravindan V, Karthikeyan K, Ravi S, et al. Adipic acid assisted sol-gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties [J]. J Mater Chem, 2010, 20 (35): 7340-7343.
[27]  Boulineau A, Sirisopanaporn C, Dominko R, et al. Polymorphism and structural defects in Li2FeSiO4 [J]. Dalton Trans, 2010, 39 (27): 6310-6316.
[28]  Huang X B, Li X, Wang H Y, et al. Synthesis and electrochemical performance of Li2FeSiO4/carbon/carbon nano-tubes for lithium ion battery [J]. Electroch Acta, 2010, 55 (24): 7362-7366.
[29]  Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J Electrochem Soc, 1997, 144 (4): 1188-1194.
[30]  Armand M. Method for synthesis of carbon-coated redox materials with controlled size: world patent, WO02/27823 [P], 2002.
[31]  Arroyo-de Dompablo M E, Armand M, Tarascon J M, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) [J]. Electrochem Commun, 2006, 8 (8): 1292-1298.
[32]  Goodenough J B, Kim Y. Challenges for Rechargeable Li Batteries [J]. Chem Mater, 2010, 22 (3): 587-603.
[33]  Nyten A, Abouimrane A, Armand M, et al. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material [J]. Electrochem Commun, 2005, 7 (2): 156-160.
[34]  Dominko R, Bele M, Gaberscek M, et al. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J]. Electrochem Commun, 2006, 8 (2): 217-222.
[35]  Nyten A, Kamali S, Haggstrom L, et al. The lithium extraction/insertion mechanism in Li2FeSiO4 [J]. J Mater Chem, 2006, 16 (23): 2266-2272.
[36]  Prakash A S, Rozier P, Dupont L, et al. Electrochemical reactivity of Li2VOSiO4 toward Li [J]. Chem Mater, 2006, 18 (2): 407-412.
[37]  Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J]. Electrochem Solid State Lett, 2001, 4 (10): A170-A172.
[38]  Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes [J]. J Electrochem Soc, 2001, 148 (3): A224-A229.
[39]  Peng Z D, Cao Y B, Hu G R, et al. Microwave synthesis of Li2FeSiO4 cathode materials for lithium-ion batteries [J]. Chinese Chem Lett, 2009, 20 (8): 1000-1004.
[40]  Lv D P, Li Y X, Huang X. K. et al. Stabilized Structure of Li2FexMn1-xSiO4: Facile Synthesis and Improved Electrochemical Performance of Li2Fe0.5Mn0.5SiO4: 4th lithium battery discussion, Arcachon, september 20-25, 2009 [C].
[41]  Lv D P, Huang X K, Wen W, et al. The first observation of exceedingone lithium ion extraction from Li2FeSiO4/C composite: 15th international meeting on lithium battery, Montreal, June 27- July 3, 2010 [C].
[42]  杨勇,李益孝,龚正良. 可充锂电池用硅酸锰锂/碳复合正极材料及其制备方法:中国, ZL200610005329.2 [P], 2008
[43]  Mali G, Meden A, Dominko R. Li-6 MAS NMR spectroscopy and first-principles calculations as a combined tool for the investigation of Li2MnSiO4 polymorphs [J]. Chem Commun, 2010, 46 (19): 3306-3308.
[44]  West A R. Crystal chemistry of some tetrahedral oxides [J]. Zeitschrift für Kristallographie, 1975, 141 (5-6): 422-436.
[45]  Sirisopanaporn C, Boulineau A, Hanzel D, et al. Crystal Structure of a New Polymorph of Li2FeSiO4 [J]. Inorg Chem, 2010, 49 (16): 7446-7451.
[46]  吕东平. 铁基正硅酸盐正极材料及其充放电机理研究 [D]. 厦门:厦门大学, 2011.
[47]  Dominko R, Conte D E, Hanzel D, et al. Impact of synthesis conditions on the structure and performance of Li2FeSiO4 [J]. J Power Sources, 2008, 178 (2): 842-847.
[48]  Muraliganth T, Stroukoff K R, Manthiram A. Microwave-Solvothermal Synthesis of Nanostructured Li2MSiO4/C (M = Mn and Fe) Cathodes for Lithium-Ion Batteries [J]. Chem Mater, 2010, 22 (20): 5754-5761.
[49]  Ghosh P, Mahanty S, Basu R N. Improved Electrochemical Performance of Li2MnSiO4/C Composite Synthesized by Combustion Technique [J]. J Electrocheml Soc, 2009, 156 (8): A677-A681.
[50]  Deng C, Zhang S, Fu B L, et al. Characterization of Li2MnSiO4 and Li2FeSiO4 cathode materials synthesized via a citric acid assisted sol-gel method [J]. Mater Chem and Phys, 2010, 120 (1): 14-17.
[51]  Liu W G, Xu Y H, Yang R, et al. Effect of Heat-treatment Temperature on the Electrochemical Performances of the Li2MnSiO4/C Composite Prepared through Polyol Process [J]. J Inorg Mater, 2010, 25 (3): 327-331.
[52]  Larsson P, Ahuja R, Liivat A, et al. Structural and electrochemical aspects of Mn substitution into Li2FeSiO4 from DFT calculations [J]. Comp Mater Sci, 2010, 47 (3): 678-684.
[53]  Wu S Q, Zhu Z Z, Yang Y, et al. Structural stabilities, electronic structures and lithium deintercalation in LixMSiO4 (M = Mn, Fe, Co, Ni): A GGA and GGA plus U study [J]. Com Mater Sci, 2009, 44 (4): 1243-1251.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133