全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2012 

木质素模型化合物在二氧化钛纳米管上光电氧化的动力学研究

, PP. 537-547

Keywords: 光电氧化,二氧化钛纳米管,原位紫外可见光谱,木质素模型化合物,DFT计算

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文用电化学方法制备了二氧化钛纳米管,并用扫描电子显微镜和X衍射对其形貌及组成进行了表征.进一步研究了木质素的两个模型化合物,1-(3,4-dimethoxyphenoxy)-2-(2-methoxyphenoxy)-1,3-propanediol(DMP)and3-hydroxy-1-(3,4-dimethoxyphenoxy)-2-(2-methoxyphenoxy)-1,3-propanone(HDM),在二氧化钛纳米管上的光电氧化.在DMP的光电氧化过程中,一个新的紫外吸收峰出现在波长304nm处.虽然中间体的形成速率随着浓度的增加而增加,却随着温度的增加而减少.尽管HDM和DMP在结构上有很小的差别,在氧化过程中DMP却呈现出很小的吸光度变化,表明HDM不易被光电氧化.量子化学计算结果也表明,DMP更容易被氧化,这个结果与光电氧化的结果相吻合.

References

[1]  Wu D, Shi Q C, Zhou J T, et al. Deep treatment of pulping wastewater using three phase fluidized bed electrode reactor[J]. Journal of Electrochemistry, 2006, 12(4): 412-415.
[2]  Pan K, Tian M, Jiang Z H, et al. Electrochemical oxidation of lignin at lead dioxide nanoparticles photoelectrodeposited on TiO2 nanotube arrays[J], Electrochimica Acta, 2012, 60: 147-153.
[3]  Tian M, Bakovic L, Chen A. Kinetics of the electrochemical oxidation of 2-nitrophenol and 4-nitrophenol studied by in situ UV spectroscopy and chemometrics[J]. Electrochimica Acta, 2007, 52(23): 6517-6524.
[4]  Zhang S G, Lei W, Xia M Z, et al. QSAR study on N-containing corrosion inhibitors: Quantum chemical approach assisted by topological index[J]. Journal of Molecular Structure, 2005, 732(1/3): 173-182.
[5]  Matthews R W. Kinetics of photocatalytic oxidation of organic solutes over titanium-dioxide[J]. Journal of Catalysis, 1988, 111(2): 264-272.
[6]  Matthews R W. Photooxidation of organic impurities in water using thin-films of titanium-dioxide[J]. Journal of Physical Chemistry, 1987, 91(12): 3328-3333.
[7]  Chen D W, Ray A K. Photodegradation kinetics of 4-nitrophenol in TiO2 suspension[J]. Water Research, 1998, 323(11): 3223-3234.
[8]  Bachrach S M. Computational organic chemistry[M]. John Wiley & Sons, 2007.
[9]  Tian M, Thind S, Simko M, et al. Quantitative structure-reactivity study of electrochemical oxidation of phenolic compounds at the SnO2-based electrode[J]. Journal of Physical Chemistry A, 2012, 116: 2927-2934..
[10]  Pearson R G, Electronic spectra and chemical reactivity[J]. Journal of the American Chemical Society, 1988, 110(7): 2092-2097.
[11]  Szwacki N G, Sadrzadeh A, Yakobson B I. B-80 fullerene: An ab initio prediction of geometry, stability, and electronic structure[J]. Physical Review Letters, 2007, 98(16):166804.
[12]  Li T C, Zhu S L. Research on phenol wastewater treatment by electrochemical oxidation[J]. Journal of Electrochemistry, 2005, 11(1): 101-104.
[13]  Wang B C, Sun Y P. Adsorption and oxidation of phenol electrode processes[J]. Journal of Electrochemistry, 2003, 9(4): 475-478.
[14]  O’Connor O A, Young L Y. Toxicity and anaerobic biodegradability of substituted phenols under methanogenic conditions[J]. Environmental Toxicology and Chemistry, 1989, 8(10): 853-862.
[15]  Tian M, Wen J L, MacDonald D, et al. A novel approach to convert lignin into value-added products [J], Electrochemistry Communications, 2010, 12(4): 527-530.
[16]  Liu Y, Liu D, Zhao S L, et al .Electrochemical oxidation of the phenol in the chloride system[J]. Journal of Electrochemistry, 2007, 13(1): 30-34.
[17]  Li Z F, Electrochemical disinfection method to treat wastewater from hospitals[J]. Journal of Electrochemistry, 2005, 11(4): 420-424.
[18]  Tolba R, Tian M, Wen J L, et al. Electrochemical oxidation/modification of lignin at IrO2-based mixed oxide electrodes[J]. Journal of Electroanalytical Chemistry, 2010, 649(1/2): 9-16.
[19]  Cao B, Xu J W, Ding L H, et al. Preparation and electrochemical characterization of anatase TiO2 nanotubes[J]. Journal of Electrochemistry, 2006, 12(4): 445-448.
[20]  Lan B B, Zhou J Z, Xi Y Y, et al. Special Photoelectrochemical response of nano-crystalline TiO2 electrode[J]. Journal of Electrochemistry, 2006, 12(1): 16-19.
[21]  Tian M, Thind S S, Chen S, et al. Significant enhancement of the photoelectrochemical activity of TiO2 nanotubes[J]. Electrochemistry Communications, 2011, 13(11): 1186-1189.
[22]  Egerton T A, Christensen P A, Harrison R W, et al. The effect of UV absorption on the photocatalytic oxidation of 2-nitrophenol and 4-nitrophenol[J]. Jouranal of Applied Electrochemistry, 2005, 35(7/8): 799-813.
[23]  Tian M, Adams B, Wen J L, et al. Photoelectrochemical oxidation of salicyclic acid and salicylaldehyde on titanium dioxide nanotube arrays[J]. Electrochimica Acta, 2009, 54(14): 3799-3805.
[24]  Yang S M, Wang J C, Kou H Z, et al. Influence of tert-butylpyridine on the band energetics of nanostructured TiO2 electrodes and the photoelectrochemical properties of dye-sensitized electrodes[J]. Journal of Electrochemistry, 2011, 17(2): 204-211.
[25]  Yun H, Lin C J, Li J, et al. Photoelectrochemical properties of N, S, and Cl modified nano TiO2 thin Films[J]. Journal of Electrochemistry, 2010, 16(4): 411-415A.
[26]  Zhang Y H, Zhang H X, Xu Y X, at al. Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO2[J]. Journal of Solid State Chemistry, 2004, 177(10): 3490-3498.
[27]  Wu P F, Li M C, Shen J N, et al. Preparation of photo-electrochemical anticorrosion TiO2 films by anodization method[J]. Journal of Electrochemistry, 2004, 10(3): 353-358.
[28]  Wu G, Wen J, Nigro S, et al. One-step synthesis of N&F co-doped mesoporous TiO2 photocatalysts with high visible light activity[J]. Nanotechnology, 2010, 21: 085701/1 – 6.
[29]  Shibata T, Sakai N, Fukuda K, et al. Photocatalytic properties of titania nanostructured films fabricated from titania nanosheets[J]. Physical Chemistry Chemical Physics, 2007, 9(19): 2413.
[30]  Wu G, Chen A. Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications[J], Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195: 47 – 53.
[31]  Antunes C S A, Bitti M, Salamone M, et al. Early stages in the TiO2-photocatalyzed degradation of simple phenolic and non-phenolic lignin model compounds[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3): 453-462.
[32]  Ruggiero R, Machado A E H, Castellan A, et al. Photoreactivity of lignin model compounds in the photobleaching of chemical pulps.1. Irradiation of 1-(3,4-dimethoxyphenyl)-2-(3''-methoxyphenoxy) -1,3-dihydroxypropane in the presence of singlet oxygen sensitizer or hydrogen peroxide in basic methanol solution[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 110(1): 91-97.
[33]  Chen A, Rogers E, Compton R G. Abrasive stripping voltammetric studies of lignin and lignin model compounds[J]. Electroanalysis, 2010, 22: 1037–1044.
[34]  Lashgari M, Arshadi M R, Parsafar G A. A simple and fast method for comparison of corrosion inhibition powers between pairs of pyridine derivative molecules[J]. Corrosion, 2005, 61(8): 778-783.
[35]  Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
[36]  Zlamal M, Macak J M, Schmuki P, et al. Electrochemically assisted photocatalysis on self-organized TiO2 nanotubes[J]. Electrochemistry Communications, 2007, 9(12): 2822-2826.
[37]  Vinodgopal K, Stafford U, Gray K A et al. Electrochemically assisted photocatalysis. 2. The role of oxygen and reaction intermediates in the degradation of 4-chlorophenol on immobilized TiO2 particulate films[J]. Journal of Physical Chemistry, 1994, 98(27): 6797-6803.
[38]  Schmidt J A, Heitner C. Light-induced yellowing of mechanical and ultra-high-yield pulps. 2. Radical-induced cleavage of etherified gualacylglycero-beta-arylether groups is the main degradative pathway[J]. Journal of Wood Chemistry Technology, 1993, 13(3): 309-325.
[39]  Al-Ekabi H, Serpone N., Kinetics studies in heterogeneous photocatalysis. 1 photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over TiO2 supported on a glass matrix[J]. Journal of Physical Chemistry, 1988, 92(20): 5726-5731.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133