Liu H S, Song C J, Zhang L, et al. A review of anode catalysis in the direct methanol fuel cell[J]. Journal of Power Sources, 2006, 155(2): 95-110.
[2]
Yu X W, Pickup P G. Recent advances in direct formic acid fuel cells (DFAFC)[J]. Journal of Power Sources, 2008, 182(1): 124-132.
[3]
Rhee Y W, Ha S Y, Masel R I. Crossover of formic acid through Nafion? membranes[J]. Journal of Power Sources, 2003, 117(1-2): 35-38.
[4]
Sun S G, Clavilier J, Bewick A. The mechanism of electrocatalytic oxidation of formic acid on Pt (100) and Pt (111) in sulphuric acid solution: an emirs study[J]. Journal of Electroanalytical Chemistry, 1988, 240(1-2): 147-159.
[5]
Osawa M, Komatsu K, Samjeske G, et al. The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum[J]. Angewandte Chemie-International Edition, 2011, 50(5): 1159-1163.
[6]
Zhou W P, Lewera A, Larsen R, et al. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid[J]. Journal of Physical Chemistry B, 2006, 110(27): 13393-13398.
[7]
Zhou W J, Lee J Y. Particle size effects in Pd-catalyzed electrooxidation of formic acid[J]. Journal of Physical Chemistry C, 2008, 112(10): 3789-3793.
[8]
Vidal-Iglesias F J, Solla-Gullon J, Herrero E, et al. Pd adatom decorated (100) preferentially oriented Pt nanoparticles for formic acid electrooxidation[J]. Angewandte Chemie-International Edition, 2010, 49(39): 6998-7001.
[9]
Meng H, Wang C, Shen P K, et al. Palladium thorn clusters as catalysts for electrooxidation of formic acid[J]. Energy & Environmental Science, 2011, 4(4): 1522-1526.
[10]
Zhou Z Y, Kang X W, Song Y, et al. Butylphenyl-functionalized palladium nanoparticles as effective catalysts for the electrooxidation of formic acid[J]. Chemical Communications, 2011, 47(21): 6075-6077.
[11]
Zhou Z Y, Ren J, Kang X W, et al. Butylphenyl-functionalized Pt nanoparticles as CO-resistant electrocatalysts for formic acid oxidation[J]. Physical Chemistry Chemical Physics, 2012, 14(4): 1412-1417.
[12]
Zheng H T, Li Y L, Chen S X, et al. Effect of support on the activity of Pd electrocatalyst for ethanol oxidation[J]. Journal of Power Sources, 2006, 163(1): 371-375.
[13]
Tian L, Ghosh D, Chen W, et al. Nanosized carbon particles from natural gas soot[J]. Chemistry of Materials, 2009, 21(13): 2803-2809.
[14]
Tian L, Song Y, Chang X J, et al. Hydrothermally enhanced photoluminescence of carbon nanoparticles[J]. Scripta Materialia, 2010, 62(11): 883-886.
[15]
Song Y, Kang X W, Zuckerman N B, et al. Ferrocene-functionalized carbon nanoparticles[J]. Nanoscale, 2011, 3(5): 1984-1989.
[16]
Nihoul G, Abdelmoula K, Metois J J. High-resolution images of a reconstructed surface structure on (111) gold platelets - Interpretation and comparison with theoretical models[J]. Ultramicroscopy, 1984, 12(4): 353-366.
[17]
Golan Y, Margulis L, Hodes G, et al. Electrodeposited quantum dots. 2. High-resolution electron microscopy of epitaxial CdSe nanocrystals on (111) gold[J]. Surface Science, 1994, 311(1-2): L633-L640.
[18]
Schlotterbeck U, Aymonier C, Thomann R, et al. Shape-selective synthesis of palladium nanoparticles stabilized by highly branched amphiphilic polymers[J]. Advanced Functional Materials, 2004, 14(10): 999-1004.
[19]
Hoshi N, Kagaya K, Hori Y. Voltammograms of the single-crystal electrodes of palladium in aqueous sulfuric acid electrolyte: Pd(S)-[n(111) ? (111)] and Pd(S)-[n(100) ? (111)][J]. Journal of Electroanalytical Chemistry, 2000, 485(1): 55-60.
[20]
Duncan H, Lasia A. Separation of hydrogen adsorption and absorption on Pd thin films[J]. Electrochimica Acta, 2008, 53(23): 6845-6850.
[21]
Liang H P, Lawrence N S, Jones T G J, et al. Nanoscale tunable proton/hydrogen sensing: Evidence for surface-adsorbed hydrogen atom on architectured palladium nanoparticles[J]. Journal of the American Chemical Society, 2007, 129 (19): 6068-6069.
[22]
Rand D A J, Woods R. The nature of adsorbed oxygen on rhodium, palladium and gold electrodes[J]. Journal of Electroanalytical Chemistry, 1971, 31(1): 29-38.
[23]
Fang L L, Tao Q A, Li M F, et al. Determination of the real surface area of palladium electrode[J]. Chinese Journal of Chemical Physics, 2010, 23(5): 543-548.
[24]
Chen M, Wang Z B, Zhou K, et al. Synthesis of Pd/C catalyst by modified polyol process for formic acid electrooxidation[J]. Fuel Cells, 2010, 10(6): 1171-1175.
[25]
Cheng N C, Lv H F, Wang W, et al. An ambient aqueous synthesis for highly dispersed and active Pd/C catalyst for formic acid electro-oxidation[J]. Journal of Power Sources, 2010, 195(21): 7246-7249.
[26]
Huang X Q, Tang S H, Mu X L, et al. Freestanding palladium nanosheets with plasmonic and catalytic properties[J]. Nature Nanotechnology, 2011, 6(1): 28-32.
[27]
Baranova E A, Miles N, Mercier P H J, et al. Formic acid electro-oxidation on carbon supported PdxPt1-x (0 ≤ x ≤ 1) nanoparticles synthesized via modified polyol method[J]. Electrochimica Acta, 2010, 55(27): 8182-8188.