全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2012 

1-芘丁酸/石墨烯复合物的电化学性质及其在葡萄糖传感器上的应用

, PP. 450-456

Keywords: 1-芘丁酸,石墨烯,葡萄糖氧化酶,电化学生物传感器,葡萄糖

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用一步法制备了1-芘丁酸/石墨烯复合物(PBA/G),研究了其电化学性质.采用铁氰化钾和亚铁氰化钾电化学探针测定了电化学阻抗滴定曲线,确定了PBA/G的表观pKa为6.2.此外,将葡萄糖氧化酶(GOD)共价键合在PBA/G表面构建了葡萄糖电化学传感器,其电化学响应与葡萄糖浓度(5mmolL-1浓度范围内)呈线性,检测限为0.085mmolL-1.实验还测定了固定在PBA/G表面的GOD的表观米氏常数为5.40mmolL-1,表明固定化的GOD对葡萄糖有较高的催化活性。

References

[1]  Gilje S, Han S, Wang M S, et al. A chemical route to graphene for device applications[J]. Nano Letters, 2007, 7(11): 3394-3398.
[2]  Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4): 217-224.
[3]  Shinde D B, Debgupta J, Kushwaha A, et al. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons[J]. Journal of the American Chemical Society, 2011, 133(12): 4168-4171.
[4]  Zeng Q, Cheng J S, Tang L H, et al. Self-assembled graphene-enzyme hierarchical nanostructures for electrochemical biosensing[J]. Advanced Functional Materials, 2010, 20(19): 3366-3372.
[5]  Zhang Q, Qiao Y, Hao F, et al. Fabrication of a biocompatible and conductive platform based on a single-stranded DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis[J]. Chemistry-A European Journal, 2010, 16(27): 8133-8139.
[6]  Kang X H, Wang J, Wu H, et al. Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing[J]. Biosensors and Bioelectronics, 2009, 25(4): 901-905.
[7]  Wang M, Xiao F N, Wang K, et al. Electric field driven protonation/deprotonation of 3,4,9,10-perylene tetracarboxylic acid immobilized on graphene sheets via π-π stacking[J]. Journal of Electroanalytical Chemistry, 2012, in press: doi: http://dx.doi.org/10.1016/j.jelechem.2012.07.036.
[8]  Wang Y, Shao Y Y, Matson D W, et al. Nitrogen-doped graphene and its application in electrochemical biosensing[J]. ACS Nano, 2010, 4(4): 1790-1798.
[9]  Chen D, Tang L, Li J H. Graphene-based materials in electrochemistry[J]. Chemical Society Review, 2010, 39(8): 3157-3180.
[10]  Wang Y, Li Z H, Wang J, et al. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology[J]. Trends in Biotechnology, 2011, 29(5): 205-212.
[11]  Zhang Q, Wu S, Zhang L, et al. Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry[J]. Biosensors and Bioelectronics, 2011, 26(5): 2632-2637.
[12]  Chen S H, Duhamel J, Bahun G J, et al. Quantifying the presence of unwanted fluorescent species in the study of pyrene-labeled macromolecules[J]. Journal of Physical Chemistry B, 2011, 115(33): 9921-9929.
[13]  Chen R J, Zhang Y G, Wang D W, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization[J]. Journal of the American Chemical Society, 2001, 123(16): 3838-3839.
[14]  Guldi D M, Rahman G M A, Jux N, et al. Functional single-wall carbon nanotube nanohybrids associating SWNTs with water-soluble enzyme model systems[J]. Journal of the American Chemical Society, 2005, 127(27): 9830-9838.
[15]  Zhao J W, Luo L Q, Yang X R, et al. Determination of surface pKa of SAM using an electrochemical titration method[J]. Electroanalysis, 1999, 11(15): 1108-1113.
[16]  Tulock J J, Blanchard G J. Role of probe molecule structure in sensing solution phase interactions in ternary systems[J]. The Journal of Physical Chemistry A, 2000, 104(36): 8340-8345.
[17]  Hu L Z, Han S, Liu Z Y, et al. A versatile strategy for electrochemical detection of hydrogen peroxide as well as related enzymes and substrates based on selective hydrogen peroxide-mediated boronate deprotection[J]. Electrochemistry Communications, 2011, 13(12): 1536-1538.
[18]  Stoller M D, Park S, Zhu Y W, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502.
[19]  Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-655.
[20]  Zhou M, Zhai Y M, Dong S J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide[J]. Analytical Chemistry, 2009, 81(14): 5603-5613.
[21]  Lee H, Ihm J, Cohen M L, et al. Calcium-decorated graphene-based nanostructures for hydrogen storage[J]. Nano Letters, 2010, 10(3): 793-798.
[22]  Xu Y X, Bai H, Lu G W, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J]. Journal of the American Chemical Society, 2008, 130(18): 5856-5857.
[23]  Gao W C, Dong H F, Lei J P, et al. Signal amplification of streptavidin-horseradish peroxidase functionalized carbon nanotubes for amperometric detection of attomolar DNA[J]. Chemical Communications, 2011, 47: 5220-5222.
[24]  Liu F, Choi K S, Park T J, et al. Graphene-based electrochemical biosensor for pathogenic virus detection[J]. BioChip Journal, 2011, 5(2): 123-128.
[25]  Guo H L, Wang X F, Qian Q Y, et al. A green approach to the synthesis of graphene nanosheets[J]. ACS Nano, 2009, 3(9): 2653-2659.
[26]  Jia W Z, Wang K, Zhu Z J, et al. One-step immobilization of glucose oxidase in a silica matrix on a Pt electrode by an electrochemically induced sol-gel process[J]. Langmuir, 2007, 23(23): 11896-11900.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133