全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2012 

Mb/AuNPs/MWNTs/GC电极对H2O2电催化性能的研究

, PP. 377-382

Keywords: 肌红蛋白,AuNPs/MWCNTs,直接电化学,生物传感器

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用还原法制备了AuNPs/MWNTs复合材料,并构建了氧化还原蛋白质的固定化和生物传感界面AuNPs/MWNTs/GC电极.以肌红蛋白(Myoglobin,Mb)为例,研究了固定化蛋白质在AuNPs/MWCNTs/GC电极上的直接电化学.结果表明,AuNPs/MWCNTs复合材料不仅能有效地促进Mb与电极表面的直接电子转移,而且能很好地保持固定化Mb的生物催化活性.Mb/AuNPs/MWCNTs/GC电极对H2O2具有良好的电催化还原性能,其线性响应范围为1~138μmol.L-1,检测下限为0.32μmol.L-1(S/N=3),并具有较低的米氏常数(0.143mmol.L-1).该电极操作简单,响应迅速,稳定性和重现性好,有望用于蛋白质的固定化及第三代生物传感器的制备.

References

[1]  Zhang Z, Chouchane S, Magliozzo R S, et al. Direct voltammetry and catalysis with mycobacterium tuberculosis catalase-peroxidase, peroxidases, and catalase in lipid films [J]. Analytical Chemistry, 2001, 74(1): 163-170.
[2]  Wang S G, Zhang Q, Wang R L, et al. Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors [J]. Electrochemistry Communications, 2003, 5(9): 800-803.
[3]  Jha N, Ramaprabhu S. Development of Au nanoparticles dispersed carbon nanotube-based biosensor for the detection of paraoxon [J], Nanoscale, 2010, 2(5): 806-810.
[4]  Wang J. Carbon-nanotube based electrochemical biosensors: A Review [J]. Electroanalysis, 2005, 17(1): 7-14.
[5]  Zhang M G, Gorski W. Electrochemical sensing platform based on the carbon nanotubes/redox mediators biopolymer system [J]. Journal of the American Chemical Society, 2005, 127(7): 2058-2059.
[6]  Jena B K, Raj C R. Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles [J]. Analytical Chemistry, 2006, 78(18): 6332-6339.
[7]  Qiu J D, Peng H P, Liang R P, et al. Facile preparation of magnetic core/shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry [J]. Biosensors and Bioelectronics, 2010, 25(6): 1447-1453.
[8]  Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems [J]. Journal of Electroanalytical Chemistry, 1979, 101(1): 19-28.
[9]  Riskin M, Basnar B, Huang Y, et al. Magnetoswitchable charge transport and bioelectrocatalysis using maghemite-Au core-shell nanoparticle/polyaniline composites [J]. Advanced Materials, 2007, 19(18): 2691-2695.
[10]  Yoon H C, Hong M Y, Kim H S. Functionalization of a poly(amidoamine) dendrimer with ferrocenyls and its application to the construction of a reagentless enzyme electrode [J]. Analytical Chemistry, 2000, 72(18): 4420-4427.
[11]  Laviron E. The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes [J]. Journal of Electroanalytical Chemistry, 1979, 100(1/2): 263-270.
[12]  Yamazaki I, Araiso T, Hayashi Y, et al. Analysis of acid-base properties of peroxidase and myoglobin [J]. Adv Biophys, 1978, 11: 249-281.
[13]  Zhang H M, Li N Q. The direct electrochemistry of myoglobin at a DL-homocysteine self-assembled gold electrode [J]. Bioelectrochemistry, 2001, 53(1): 97-101.
[14]  Moghaddam A B, Ganjali M R, Dinarvand R, et al. Myoglobin immobilization on electrodeposited nanometer-scale nickel oxide particles and direct voltammetry [J]. Biophysical Chemistry, 2008, 134(1/2): 25-33.
[15]  Wu Y H, Shen Q C, Hu S S. Direct electrochemistry and electrocatalysis of heme-proteins in regenerated silk fibroin film [J]. Analytica Chimica Acta. 2006, 558(1/2): 179-186.
[16]  Safavi A, Farjami F. Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film [J]. Analytical Biochemistry, 2010, 402(1): 20-25.
[17]  Zhang Y, Chen X, Yang W. Direct electrochemistry and electrocatalysis of myoglobin immobilized in zirconium phosphate nanosheets film [J]. Sensors and Actuators B: Chemical, 2008, 130(2): 682-688.
[18]  Zhao G, Feng J J, Xu J J, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 film [J]. Electrochemistry Communications, 2005, 7(7): 724-729.
[19]  Gan X, Liu T, Zhong J, et al. Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin [J]. ChemBioChem, 2004, 5(12): 1686-1691.
[20]  Lu X B, Zhang Q, Zhang L, et al. Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid [J]. Electrochemistry Communications, 2006, 8(5): 874-878.
[21]  Zong S Z, Cao Y, Zhou Y M, et al. Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix [J]. Biosensors and Bioelectronics, 2007, 22(8): 1776-1782.
[22]  Zhang L, Zhang Q, Li J. Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry [J]. Advanced Functional Materials, 2007, 17(12): 1958-1965.
[23]  Xu H, Xiong H, Zeng Q, et al. Direct electrochemistry and electrocatalysis of heme proteins immobilized in single-wall carbon nanotubes-surfactant films in room temperature ionic liquids [J]. Electrochemistry Communications, 2009, 11(2): 286-289.
[24]  Qiu J D, Cui S G, Deng M Q, et al. Direct electrochemistry of myoglobin immobilized in NiO/MWNTs hybrid nanocomposite for electrocatalytic detection of hydrogen peroxide [J]. Journal of Applied Electrochemistry, 2010, 40(9): 1651-1657.
[25]  Kamin R A, Wilson G S. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer [J]. Analytical Chemistry, 1980, 52(8): 1198-1205.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133