全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2012 

锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的合成及其高温容量衰减研究

, PP. 118-124

Keywords: 锂离子电池正极材料,LiNi0.5Co0.2Mn0.3O2,高温容量衰减,X射线光电子能谱,交流阻抗谱

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用共沉淀-高温固相烧结法合成了富镍型三元复合正极材料LiNi0.5Co0.2Mn0.3O2,恒流充放电测试表明材料在3.0~4.4V条件下0.2C放电容量达到179.2mAh?g-1,但在55°C经历100次充放电循环后发生急剧的容量衰减。电化学交流阻抗谱、X射线光电子能谱、原子发射光谱等实验表明在高温高电压下,电解液与LiNi0.5Co0.2Mn0.3O2电极材料之间的副反应加剧,导致过渡金属原子溶出,造成该材料局域结构破坏,同时电极材料表面还沉积了高阻抗的LiF/金属氟化物层,使得在电极的充放电过程中电荷转移阻抗和Li+扩散阻抗不断增加,以致电池容量急剧衰减。

References

[1]  Park M, Lee J, Choi W, et al. On the surface modifications of high-voltage oxide cathodes for lithium-ion batteries: new insight and significant safety improvement [J]. Journal of Materials Chemistry, 2010, 20(34): 7208-7213.
[2]  Lee D, Scrosati B, Sun Y. Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55 °C [J]. Journal of Power Sources, 2011, 196(18): 7742-7746.
[3]  Dahn J R, Von Sacken U, Michal C A. Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure [J]. Solid State Ionics, 1990, 44(1/2): 87-97.
[4]  Liu Z, Yu A, Lee J Y. Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries [J]. Journal of Power Sources, 1999, 81-82: 416-419.
[5]  Andersson A M, Edstro?m K. Chemical composition and morphology of the elevated temperature SEI on graphite [J]. Journal of the Electrochemical Society, 2001, 148(10): A1100-A1109.
[6]  Liu H. A comparative study of LiNi0.8Co0.2O2 cathode materials modified by lattice-doping and surface-coating [J]. Solid State Ionics, 2004, 166(3/4): 317-325.
[7]  Chernova N A, Ma M, Xiao J, et al. Layered LixNiyMnyCo1-2yO2 cathodes for lithium ion batteries:? understanding local structure via magnetic properties [J]. Chemistry of Materials, 2007, 19(19): 4682-4693.
[8]  Ni J, Zhou H, Chen J, et al. Improved electrochemical performance of layered LiNi0.4Co0.2Mn0.4O2 via Li2ZrO3 coating [J]. Electrochimica Acta, 2008, 53(7): 3075-3083.
[9]  Huang Y, Chen J, Cheng F, et al. A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 and its comparison with traditional Al2O3 coating process [J]. Journal of Power Sources, 2010, 195(24): 8267-8274.
[10]  Abraham D P, Twesten R D, Balasubramanian M, et al. Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells [J]. Electrochemistry Communications, 2002, 4(8): 620-625.
[11]  Kobayashi H, Shikano M, Koike S, et al. Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells [J]. Journal of Power Sources, 2007, 174(2): 380-386.
[12]  Sun Y, Myung S, Yoon C S, et al. Improvement of high voltage cycling performances of LiNi1/3Co 1/3Mn1/3O2 at 55 °C by a (NH4)3AlF6 coating [J]. Electrochemical and Solid State Letters, 2009, 12(8): A163-A166.
[13]  Lee Y S, Kim S B, Lee K J, et al. Preparation and cycle performance at high temperature for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4 [J]. Journal of Solid-State Electrochemistry, 2010, 14(6): 919-922.
[14]  Lee Y S, Kim W S, Kim S B, et al. Remarkable improvement in cell safety for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4 [J]. Journal of Alloys and Compounds, 2010, 492(1/2): L87-L90.
[15]  Liu D, Lu Y, Goodenough J B. Rate properties and elevated-temperature performances of LiNi0.5?xCr 2xMn1.5?xO4 (0≤2x≤0.8) as 5 V cathode materials for lithium-ion batteries [J]. Journal of the Electrochemical Society, 2010, 157(11): A1269-A1273.
[16]  Sun Y, Lee B, Noh H, et al. A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries [J]. Journal of Materials Chemistry, 2011, 21(27): 10108-10112.
[17]  Lee B R, Noh H J, Myung S T, et al. High-Voltage Performance of Li[Ni0.55Co0.15Mn0.30]O2 positive electrode material for rechargeable Li-ion batteries [J]. Journal of the Electrochemical Society, 2011, 158(2): A180-A186.
[18]  Edstrom K, Gustafsson T, Thomas J. The cathode–electrolyte interface in the Li-ion battery [J]. Electrochimica Acta, 2004, 50(2/3): 397-403.
[19]  Chen Z Y (陈召勇), Liu X Q (刘兴泉), Gao L Z (高利珍), et al. Electrochemical capacity fading in high temperature of spinel LiMn2O4 and its improvement [J]. Chinese Journal of Inorganic Chemistry (无机化学学报), 2001, 17(3): 325-330.
[20]  Nobili F, Croce F, Scrosati B, et al. Electronic and electrochemical properties of LixNi1-yCoyO2 cathodes studied by impedance spectroscopy [J]. Chemistry of Materials, 2001, 13(5): 1642-1646.
[21]  Zhang S S, Xu K, Jow T R. Electrochemical impedance study on the low temperature of Li-ion batteries [J]. Electrochimica Acta, 2004, 49(7): 1057-1061.
[22]  Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries [J]. Electrochimica Acta, 2010, 55(22): 6332-6341.
[23]  Murakami M, Yamashige H, Arai H, et al. Direct evidence of LiF Formation at electrode/electrolyte interface by 7Li and 19F double-resonance solid-state NMR spectroscopy [J]. Electrochemical and Solid-State Letters, 2011, 14(9): A134-A137.
[24]  Dahe?ron L, Martinez H, Dedryve?re R, et al. Surface properties of LiCoO2 investigated by XPS analyses and theoretical calculations [J]. The Journal of Physical Chemistry C, 2009, 113(14): 5843-5852.
[25]  Myung S, Amine K, Sun Y. Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries [J]. Journal of Materials Chemistry, 2010, 20(34): 7074-7095.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133