全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2012 

LiFeSO4F/石墨烯复合材料的制备与电化学性能

, PP. 125-130

Keywords: 锂离子电池,LiFeSO4F,石墨烯,电化学性能,正极材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

分别以FeSO4?H2O、FeSO4?4H2O和FeSO4?7H2O为原料与LiF在四甘醇介质中反应制得LiFeSO4F,用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)表征LiFeSO4F的结构和形貌.热重分析表明LiFeSO4F在400°C开始分解.XRD结果表明,以FeSO4?4H2O和FeSO4?7H2O为原料,多个结晶水的存在可以延缓原料的脱水过程,有利于消除产物中FeSO4杂相的生成.利用循环伏安(CV)、电化学交流阻抗(EIS)和充放电实验测试了材料的电化学性能,发现加入石墨烯后可以促进LiFeSO4F的电化学活性,提高材料的比容量、倍率性能和循环性能.

References

[1]  Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials, 2005, 4(5): 366-377.
[2]  Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries [J]. Angewandte Chemie International Edition, 2008, 47(16), 2930-2946.
[3]  Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review [J]. Energy & Environmental Science, 2011, 4(9): 3243-3262.
[4]  Armand M, Tarascon J M. Building better batteries [J]. Nature, 2008, 451(7179): 652-657.
[5]  Guo Y G, Hu J S, Wan L J. Nanostructured materials for eletrochemical energy conversion and storage devices [J]. Advanced Matererials, 2008, 20(15): 2878-2887.
[6]  Poizot P, Dolhem F. Clean enery new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices [J]. Energy & Environmental Science, 2011, 4(6), 2003-2019.
[7]  Tarascon J M. Key challenges in future Li-battery research [J]. Philosophical Transactions of the Royal Society A, 2010, 368(1923): 3227-3241.
[8]  Yuan L X, Wang Z H, Zhang W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries [J]. Energy & Environmental Science, 2011, 4(2): 269-284.
[9]  Marom R, Amalraj S F, Leifer N, et al. A review of advanced and practical lithium battery materials [J]. Journal of Materials Chemistry, 2011, 21(27): 9938-9954.
[10]  Manthiram A. Materials challenges and opportunities of lithium ion batteries [J]. Journal of Physical Chemistry Letters, 2011, 2(3): 176-184.
[11]  Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359-367.
[12]  Li H, Wang Z X, Chen L Q, et al. Research on advanced materials for Li-ion batteries [J]. Advanced Matererials, 2009, 21(45): 4593-4607.
[13]  Wu X L, Jiang L Y, Cao F F, et al. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix:superior cathode material for electrochemical energy-storage devices [J]. Advanced Materials, 2009, 21(25/26): 2710-2714.
[14]  Fergus J W. Recent developments in cathode materials for lithium ion batteries [J]. Journal of Power Sources, 2010, 195(4): 939-954.
[15]  Li X. X, Cheng F Y, Guo B, et al. Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries [J]. Journal of Physical Chemistry B, 2005, 109(29): 14017-14024.
[16]  Wei G Z, Lu X, Ke F S, et al. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium-ion batteries [J]. Advanced Materials, 2010, 22(39): 4363-4367.
[17]  Park O K, Cho Y, Lee S, et al. Who will drive electric vehicles, olivine or spinel? [J]. Energy & Environmental Science, 2011, 4(5): 1621–1633.
[18]  Recham N, Chotard J N, Dupont L, et al. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries [J]. Nature Materials, 2010, 9(1): 68-74.
[19]  Tarascon J M, Recham N, Armand M, et al. Hunting for better Li-based electrode materials via low temperature inorganic synthesis [J]. Chemistry of Materials, 2010, 22(3): 724-739.
[20]  Tripathi R, Ramesh T N, Ellis B L, et al. Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials [J]. Angewandte Chemie International Edition, 2010, 49(46), 8738-8742.
[21]  Cao F F, Guo Y G, Wan L J. Better lithium-ion batteries with nanocable-like electrode materials [J]. Energy & Environmental Science, 2011, 4(5): 1634-1642.
[22]  Guo W, Yin Y X, Xin S, et al. Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene [J]. Energy & Environmental Science, 2012, 5(1): 5221-5225.
[23]  Zhang L S, Jiang L Y, Yan H J, et al. Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries [J]. Journal of Materials Chemistry, 2010, 20(26): 5462-5467.
[24]  Wang B, Wu X L, Shu C Y, et al. Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries [J]. Journal of Materials Chemistry, 2010, 20(47): 10661-10664.
[25]  Wang H, Cui L F, Yang Y, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries [J]. Journal of the American Chemical Society, 2010, 132(40): 13978-13980.
[26]  Sun Y, Wu Q, Shi G. Graphene based new energy materials [J]. Energy & Environmental Science, 2011, 4(4),1113-1132.
[27]  Guo Y G (郭玉国), Wang Z L (王忠丽), Wu X L (吴兴隆), et al. Nano/micro-structured electrode materials for lithium-ion batteries [J]. Journal of Electrochemistry (电化学), 2010, 16(2): 119-124.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133