Qiu Y, Gao L. Novel polyaniline/Titanium nitride nanocomposite: Controllable structures and electrical/Electrochemical properties[J]. The Journal of Physical Chemistry B, 2005, 109(42): 19732-19740.
[2]
Snyder M Q, Trbukhova S A, Ravdel B, et al. Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel power as a lithium-ion battery anode[J]. Journal of Power Sources, 2007, 165(1): 379-385.
[3]
Lin Y J, Chang Y H, Yang W D, et al. Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepapred by a modified Pechini method[J]. Journal of Non-Crystalline Solids, 2006, 352(8): 789-794.
[4]
Han H , Song T, Bae J Y, et al. Nitridated TiO2 hollow nanofibers as anode material for high power lithium ion batteries[J]. Energy & Environmental Science , 2011, 4(11): 4532-4536.
[5]
Zhang K J, Wang H B, Cui G L, et al. A hybrid material of vanadium nitride and nitrogen-doped graphene for lithium storage[J]. Journal of Materials Chemistry, 2011, 21(32): 11916-11922.
[6]
Wang L, Wang H B, Cui G L, et al. A facile method of preparing mixed conducting LiFePO4/Graphene composites for lithium-ion batteries[J]. Solid State Ionics, 2010, 181(37-38): 1685-1689.
[7]
Poizot P, Laruelle S, Tarascon J M, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407(6803): 496-499.
[8]
Cabana J, Monconduit L, Palacín M R, et al. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Advanced Materials, 2010, 22(35): E170-E192.
[9]
Yu X Q, He Y, Li H, et al. Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential[J]. Electrochemistry Communications, 2009, 11(4):791-794.
[10]
Zhong K F, Xia X, Li H, et al. MnO powder as anode active materials for lithium ion batteries[J]. Journal of Power Sources, 2010, 195(10): 3300-3308.
[11]
Zhong K F, Zhang B, Li H, et al. Investigation on porous MnO microsphere anode for lithium ion batteries[J]. Journal of Power Sources, 2011, 196(16): 6802-6808.
[12]
Sun B, Chen Z X, Wang G X, et al. MnO/C core-shell nanorods as high capacity anode materials for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(6): 3346-3349.
[13]
Liu Y M, Zhao X Y, Xia D G, et al. Facile synthesis of MnO/C anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2011, 56(18): 6448-6452.
[14]
Liu J, Pan Q M. MnO/C nanocomposites and high capacity anode materials for Li-ion battery[J]. Electrochemical and Solid-State Letters , 2010, 13(10): A139-A142.
[15]
Ding Y L, Wu C Y, Zhao X B, et al. Coaxial MnO/C nanotubes as anodes for lithium-ion batteries[J]. Electrochimica Acta, 2011, 56(16): 5844-5848.
[16]
Cui G L, Gu L, Thomas A, et al. A carbon/titanium vanadium nitride composite for lithium storage[J]. ChemPhyChem, 2010, 11(15): 3219-3223.
[17]
Dong S M, Chen X, Cui G L, et al. Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage[J]. ACS Applied Materials & Interfaces, 2011(1), 3: 93-98.
[18]
Zhou X H, Shang C Q, Cui G L, et al. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2011, 3(8): 3058-3063.
[19]
Dong S M, Chen X, Cui G L, et al. TiN/VN composites with core/shell structure for supercapacitors[J]. Materials Research Bulletin, 2011, 46(6): 835-839.
[20]
Dong S M, Chen X, Cui G L, et al. A biocompatible titanium nitride nanorods derived nanostructured electrode for biosensing and bioelectrochemical energy conversion[J]. Biosensors and Bioelectronics, 2011, 26(10): 4088-4094.
[21]
Dong S M, Chen X, Cui G L, et al. One dimensional MnO2/titanium nitride nanotube coaxial arrays for high performance electrochemical capacitive energy storage[J]. Energy & Environmental Science, 2011, 4(9): 3502-3508.