全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2013 

重金属自产电能的电化学处理

, PP. 345-349

Keywords: 重金属,自产电能,电化学处理

Full-Text   Cite this paper   Add to My Lib

Abstract:

重金属污染是最受关注的环境问题之一.电化学处理快速、高效,因而备受关注,发展快速.本文从重金属离子在阴极接受电子完成电化学还原的原电池和燃料电池系统角度考虑,阐述重金属离子的产电原理,结合实例介绍了重金属在阴极的还原方式,讨论了重金属自产电能处理技术的优势和存在的问题.污染物自身产能的电化学处理是一种崭新的技术,以期早日付之实用.

References

[1]  Dai S G(戴树桂). Environmental chemistry (Second edition)[M]. Beijing: Higher Education Press(高等教育出版社), 2006: 390-403.
[2]  Bassam A A, Yusuf Y, A. Savas K. Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes[J]. Separation and Puri?cation Technology, 2012, 86: 248-254.
[3]  Wang Z J, Lim B S, Choi C S. Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell[J]. Bioresource Technology, 2011, 102(10): 6304-6307.
[4]  Annemiek T H, Liu F, Van Der Weijden R, et al. Copper recovery combined with electricity production in a microbial fuel cell[J]. Environmental Science & Technology, 2010, 44(11): 4376-4381.
[5]  Tao H C, Liang M, Li W, et al. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell[J]. Journal of Hazardous Materials, 2011, 189(1/2): 186-192.
[6]  Clauwaert P, Rabaey K, Aelterman P, et al. Biological denitrification in microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9): 3354-3360.
[7]  Rozendal R A, Jeremiasse A W, Hamelers H V M, et al. Hydrogen production with a microbial biocathode[J]. Environmental Science & Technology, 2008, 42(2): 629-634.
[8]  Tandukar M, Huber S J, Onodera T, et al. Biological chromium(VI) reduction in the cathode of a microbial fuel cell[J]. Environmental Science & Technology, 2009, 43(21): 8159-8165.
[9]  Huang L P, Chen J W, Quan X, et al. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell[J]. Bioprocess and Biosystems Engineering, 2010, 33(8): 937-945.
[10]  Huang L P, Chai X L, Cheng S A, et al. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation[J]. Chemical Engineering Journal, 2011, 166(2): 652-661.
[11]  Huang L P, Chai X L, Chen G H, et al. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells[J]. Environmental Science & Technology, 2011, 45(11): 5025-5031.
[12]  Liu L A, Yuan Y, Li F B, et al. In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria[J]. Bioresource Technology, 2011, 102(3): 2468-2473.
[13]  Zhu Y L, Liu C, Liang J S, et al. Investigation of the effects of compression pressure on direct methanol fuel cell[J]. Journal of Power Sources, 2011, 196(1): 264-269.
[14]  Liu Y B, Li J H, Zhou B X, et al. Ef?cient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell[J].Water Research, 2011, 45(13): 3991-3998.
[15]  Antonino S A, Peter B, Bruno S, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4: 366-377.
[16]  Srinivasan S, Mosdale R, Stevens P, et al. Fuel cells: Reaching the era of clean and ef?cient power generation in the twenty-?rst century[J]. Annual Review of Environment and Resources, 1999, 24: 281-238.
[17]  Yi L H, Song Y F, Yi W, et al. Carbon supported Pt hollow nanospheres as anode catalysts for direct borohydride-hydrogen peroxide fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(18): 11512-11518.
[18]  Zhao J, Chen W X, Zheng Y F, et al. Novel carbon supported hollow Pt nanospheres for methanol electrooxidation[J]. Journal of Power Sources, 2006, 162(1): 168-172.
[19]  Liang H P, Zhang H M, Hu J S, et al. Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts[J]. Angewandte Chemie International Edition, 2004, 116(12): 1566-1569.
[20]  Yan W, Wang D, Gerardine G B. Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation[J]. Electrochimica Acta, 2012, 61: 25-30.
[21]  Rajeshwar K, Ibanez J, Swain G M. Electrochemistry and the environment[J]. Journal of Applied Electrochemistry, 1994, 24(11): 1077-1091.
[22]  Martin W, Ralph J B. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews, 2004, 104(10): 4245-4269.
[23]  Vladimir S B. Fuel cells: Problems and solutions[M]. Beijing: Posts & Telelcom Press(人民邮电出版社), 2011: 6-7.
[24]  Dalas E, Kobotiatis L. Primary solid-state batteries constructed from copper and indium sulphides[J]. Journal of Materials Science, 1993, 28(24): 6595-6597.
[25]  Logan B E. Microbial fuel cells[M]. Hoboken, New Jersey: John Wiley & Sons, Inc, 2007: 5
[26]  Lide D R. Handbook of chemistry and physics[M]. 84th edition, CRC PRESS, 2003-2004: 1217-1222.
[27]  Logan B E. Microbial Fuel Cells[M]. Hoboken, New Jersey: John Wiley & Sons, Inc, 2007, 51-55.
[28]  Rabaey K and Rozendal R A. Microbial electrosynthesis—revisiting the electrical route for microbial production[J]. Nature Reviews Microbiology, 2010, 8: 706-716.
[29]  Li Z J, Zhang X W, Lei L C. Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell[J].Process Biochemistry, 2008, 43(12): 1352-1358.
[30]  Wang G, Huang L P, Zhang Y F. Cathodic reduction of hexavalent chromium[Cr(VI)] coupled with electricity generation in microbial fuel cells[J]. Biotechnology Letters, 2008, 30(11): 1959-1966.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133