全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2013 

新型ITSOFC复合电解质氧化铈-硫酸盐的制备和表征

, PP. 210-214

Keywords: 固体氧化物燃料电池,钐掺杂二氧化铈,电导率

Full-Text   Cite this paper   Add to My Lib

Abstract:

制备了一种适用于中温固体氧化物燃料电池的新型两相复合电解质钐掺杂二氧化铈SDC-(Li/Na)2SO4.使用XRD和SEM表征该复合电解质的物相结构和观察电解质片的截面形貌,交流阻抗法测量其400oC~700oC的电导率.结果表明,SDC-(Li/Na)2SO4由结晶相SDC和无定形相(Li/Na)2SO4组成.在中温范围(500oC~700oC)该复合电解质电导率比SDC显著增大并随温度升高呈三段变化:T<500oC,表观离子传导活化能为1.28eV;500oC~550oC第二相硫酸盐融化,电导率激增;T≥550oC,电导率又缓慢增加,活化能降为0.30eV,与SDC和文献报道的SDC-(Li/Na)2CO3相比,其电导率均显著提高,如550oC时SDC-(Li/Na)2SO4的电导率可达0.217S·cm-1,分别为SDC和SDC-(Li/Na)2CO3的25倍和3.2倍.硫酸盐的熔融改变了离子在电解质中的传导机制,显著提高了SDC-(Li/Na)2SO4复合电解质的中温电导率.

References

[1]  Steele B C, Heinzel A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352.
[2]  Guo Y Q, Yin Y M, Tong Z, et al. Impact of synthesis technique on the structure and electrochemical characteristics of Pr0.6Sr0.4Co0.2Fe0.8O3-δ (PSCF) cathode material[J]. Solid State Ionics, 2011, 193(1): 18-22.
[3]  Yin Y M, Xiong M W, Yang N T, et al. Investigation on thermal, electrical, and electrochemical properties of scandium-doped Pr0.6Sr0.4(Co0.2Fe0.8)(1-x)ScxO3-δ as cathode for IT-SOFC[J]. International Journal of Hydrogen Energy, 2011, 36(6): 3989-3996.
[4]  Li H, Xia C, Zhu M, et al. Reactive Ce0.8Sm0.2O1.9 powder synthesized by carbonate coprecipitation: Sintering and electrical characteristics[J]. Acta Materialia, 2006, 54(3): 721-727.
[5]  Wu W C, Huang J T, Chiba A. Synthesis and properties of samaria-doped ceria electrolyte for IT-SOFCs by EDTA-citrate complexing method[J]. Journal of Power Sources, 2010, 195(18): 5868-5874.
[6]  Chen M, Kim B H, Xu Q, et al. Synthesis and electrical properties of Ce0.8Sm0.2O1.9 ceramics for IT-SOFC electrolytes by urea-combustion technique[J]. Ceramics International, 2009, 35(4): 1335-1343.
[7]  Di J, Chen M, Wang C, et al. Samarium doped ceria-(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell[J]. Journal of Power Sources, 2010, 195(15): 4695-4699.
[8]  Li S, Wang X, Zhu B. Novel ceramic fuel cell using non-ceria-based composites as electrolyte[J]. Electrochemistry Communications, 2007, 9(12): 2863-2866.
[9]  Ma Y, Wang X, Li S, et al. Samarium-doped ceria nanowires: Novel synthesis and application in low-temperature solid oxide fuel cells[J]. Advanced Materials, 2010, 22(14): 1640-1644.
[10]  Ma Y, Wang X, Raza R, et al. Thermal stability study of SDC/Na2CO3 nanocomposite electrolyte for low-temperature SOFCs[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2580-2585.
[11]  Wang X, Ma Y, Raza R, et al. Novel core-shell SDC/amorphous Na2CO3 nanocomposite electrolyte for low-temperature SOFCs[J]. Electrochemistry Communications, 2008, 10(10): 1617-1620.
[12]  Zhu B, Li S, Mellander B E. Theoretical approach on ceria-based two-phase electrolytes for low temperature (300-600 °C) solid oxide fuel cells[J]. Electrochemistry Communications, 2008, 10(2): 302-305.
[13]  Gao Z, Huang J, Mao Z, et al. Preparation and characterization of nanocrystalline Ce0.8Sm0.2O1.9 for low temperature solid oxide fuel cells based on composite electrolyte[J]. International Journal of Hydrogen Energy, 2010, 35(2): 731-737.
[14]  Huang J, Gao R, Mao Z, et al. Investigation of La2NiO4+δ-based cathodes for SDC-carbonate composite electrolyte intermediate temperature fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2657-2662.
[15]  Huang J, Gao Z, Mao Z. Effects of salt composition on the electrical properties of samaria-doped ceria/carbonate composite electrolytes for low-temperature SOFCs[J]. International Journal of Hydrogen Energy, 2010, 35(9): 4270-4275.
[16]  Huang J, Mao Z, Liu Z, et al. Performance of fuel cells with proton-conducting ceria-based composite electrolyte and nickel-based electrodes[J]. Journal of Power Sources, 2008, 175(1): 238-243.
[17]  Huang J, Xie F, Wang C, et al. Development of solid oxide fuel cell materials for intermediate-to-low temperature operation[J]. International Journal of Hydrogen Energy, 2012, 37(1): 877-883.
[18]  Huang J, Yang L, Gao R, et al. A high-performance ceramic fuel cell with samarium doped ceria-carbonate composite electrolyte at low temperatures[J]. Electrochemistry Communications, 2006, 8(5): 785-789.
[19]  Xia C, Li Y, Tian Y, et al. Intermediate temperature fuel cell with a doped ceria-carbonate composite electrolyte[J]. Journal of Power Sources, 2010, 195(10): 3149-3154.
[20]  Di J(邸婧), Wang C Y(王成扬), Chen M M(陈明鸣, et al. A novel composite electrolyte based on CeO2 for low temperature solid oxide fuel cells[J]. Journal of Inorganic Materials, 2008, 23(3): 573-577.)
[21]  Torrens R S, Sammes N M, Tompsett G A. Characterisation of (CeO2)0.8(GdO1.5)0.2 synthesised using various techniques[J]. Solid State Ionics, 1998, 111(1/2): 9-15.
[22]  Zhu B, Liu X, Zhu Z, et al. Solid oxide fuel cell (SOFC) using industrial grade mixed rare-earth oxide electrolytes[J]. International Journal of Hydrogen Energy, 2008, 33(13): 3385-3392.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133