,正极材料')"href="#">正极材料,富锂材料')"href="#">富锂材料,充放电机理')"href="#">充放电机理,电化学改性,')"href="#">电化学改性, Open Access Library" />

全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2013 

锂离子电池用富锂正极材料的研究进展

, PP. 215-224

Keywords: &searchField=keyword">锂离子电池')"href="#">,正极材料&searchField=keyword">正极材料')"href="#">正极材料,富锂材料&searchField=keyword">富锂材料')"href="#">富锂材料,充放电机理&searchField=keyword">充放电机理')"href="#">充放电机理,电化学改性,电化学改性&searchField=keyword">')"href="#">电化学改性

Full-Text   Cite this paper   Add to My Lib

Abstract:

富锂材料xLi2MnO3·(1-x)LiMO2(0

References

[1]  Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(7): 7854-7863.
[2]  Thackeray M M, Kang S H, Johnson C S, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2007, 17(30): 3112-3125.
[3]  Koyama Y, Tanaka I, Nagao M, et al. First-principles study on lithium removal from Li2MnO3[J]. Journal of Power Sources, 2009, 189(1): 798-801.
[4]  Lu Z, Beaulieu L Y, Donaberger R A, et al. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2[J]. Journal of The Electrochemical Society, 2002, 149(6): A778-A791.
[5]  Hu S K, Cheng G H, Cheng M Y, et al. Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries[J]. Journal of Power Sources, 2009, 188(2): 564-569.
[6]  Jarvis K A, Deng Z, Allard L F, et al. Atomic structure of a lithium-rich layered oxide material for Lithium-ion batteries: Evidence of a solid solution[J]. Chemistry of Materials, 2011, 23(16): 3614-3621.
[7]  Baren?o J, Balasubramanian M, Kang S H, et al. Long-range and local structure in the layered oxide Li1.2Co0.4Mn0.4O2[J]. Chemistry of Materials, 2011, 23(8): 2039-2050.
[8]  Boulineau A, Simonin L, Colin J F, et al. Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the initial charge/discharge cycle studied by advanced electron microscopy[J]. Chemistry of Materials, 2012, 24(18), 3558-3566.
[9]  Simonin L, Colin J F, Ranieri V, et al. In situ investigations of a Li-rich Mn-Ni layered oxide for Li-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(22): 11316-11322.
[10]  West W C, Soler J, Ratnakumar B V. Preparation of high quality layered-layered composite Li2MnO3-LiMO2 (M = Ni, Mn, Co) Li-ion cathodes by a ball milling-annealing process[J]. Journal of Power Sources, 2012, 204: 200-204.
[11]  Yabuuchi N, Yoshii K, Myung S T, et al. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2[J]. Journal of the American Chemical Society, 2011, 133(12): 4404-4419.
[12]  Gao J, Manthiram A. Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts[J]. Journal of Power Sources, 2009, 191(2): 644-647.
[13]  Wang Z(王昭), Wu F(吴锋), Su Y F(苏岳锋), et al. Preparation and characterization of xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2 cathode materials for lithium-ion batteries[J]. Acta Physico-Chimica Sinica(物理化学学报), 2012, 28(4): 823-830.
[14]  Liu B, Zhang Q, He S, et al. Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4[J]. Electrochimica Acta, 2011, 56(19): 6748-6751.
[15]  He W, Qian J, Cao Y, et al. Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries[J]. RSC Advances, 2012, 2(8): 3423-3429.
[16]  Croy J R, Kang S H, Balasubramanian M, et al. Li2MnO3-based composite cathodes for lithium batteries: A novel synthesis approach and new structures[J]. Electrochemistry Communications, 2011, 13(10): 1063-1066.
[17]  Lee Y, Kim M G, Cho J. Layered Li0.88[Li0.18Co0.33Mn0.49]O2 nanowires for fast and high capacity Li-ion storage material[J]. Nano Letters, 2008, 8(3): 957-961.
[18]  Johnson C S, Kim J S, Lefief C, et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1-x)LiMn0.5Ni0.5O2 electrodes[J]. Electrochemistry Communications, 2004, 6(10): 1085-1091.
[19]  Lu Z, Dahn J R. Understanding the anomalous capacity of Li/Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies[J]. Journal of The Electrochemical Society, 2002, 149(7): A815-A822.
[20]  Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2[J]. Journal of the American Chemical Society, 2006, 128(26): 8694-8698.
[21]  Tran N, Croguennec L, Me?ne?trier M, et al. Mechanisms associated with the “plateau” observed at high voltage for the overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 system[J]. Chemistry of Materials, 2008, 20(15): 4815-4825.
[22]  Hong J, Lim H D, Lee M, et al. Critical role of oxygen evolved from layered Li-excess metal oxides in Lithium rechargeable batteries[J]. Chemistry of Materials, 2012, 24(14): 2692-2697.
[23]  Xu B, Fell C R, Chi M, et al. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study[J]. Energy & Environmental Science, 2011, 4(6): 2223-2233.
[24]  Ito A, Li D, Sato Y, et al. Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2[J]. Journal of Power Sources, 2010, 195(2): 567-573.
[25]  Deng Z Q, Manthiram A. Influence of cationic substitutions on the oxygen loss and reversible capacity of Lithium-rich layered oxide cathodes[J]. The Journal of Physical Chemistry C, 2011, 115(14): 7097-7103.
[26]  Tang Z, Wang Z, Li X, et al. Preparation and electrochemical properties of Co-doped and none-doped Li[LixMn0.65(1?x)Ni0.35(1?x)]O2 cathode materials for lithium battery batteries[J]. Journal of Power Sources, 2012, 204: 187-192.
[27]  Yu H, Zhou H. Initial coulombic efficiency improvement of the Li1.2Mn0.567Ni0.166Co0.067O2 lithium-rich material by ruthenium substitution for manganese[J]. Journal of Materials Chemistry, 2012, 22(31): 15507-15510.
[28]  Martha S K, Nanda J, Veith G M, et al. Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175Co0.1O2[J]. Journal of Power Sources, 2012, 216: 179-186.
[29]  Liu J, Reeja-Jayan B, Manthiram A. Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes[J]. The Journal of Physical Chemistry C, 2010, 114(20): 9528-9533.
[30]  Liu J, Wang Q, Reeja-Jayan B, et al. Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes[J]. Electrochemistry Communications, 2010, 12(6): 750-753.
[31]  Wu Y, Manthiram A. Effect of surface modifications on the layered solid solution cathodes (1-z)Li[Li1/3Mn2/3]O2-(z)Li[Mn0.5-yNi0.5-yCo2y]O2[J]. Solid State Ionics, 2009, 180(1): 50-56.
[32]  Wu Y, Vadivel Murugan A, Manthiram A. Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4[J]. Journal of The Electrochemical Society, 2008, 155(9): A635-A641.
[33]  Liu J, Manthiram A. Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode[J]. Journal of Materials Chemistry, 2010, 20(19): 3961-3967.
[34]  Deng S N(邓胜男), Shi Z C(施志聪), Zheng J(郑隽), et al. Performance of Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for lithium ion batteries by surface coating[J]. Chinese Journal of Power Sources(电源技术), 2012, 36(4): 463-466.
[35]  Sun Y K, Lee M J, Yoon C S, et al. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J]. Advanced Materials, 2012, 24(9): 1192-1196.
[36]  Rosina K J, Jiang M, Zeng D, et al. Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2 cathodes for secondary lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(38): 20602-20610.
[37]  Wu F, Li N, Su Y, et al. Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials?[J]. Journal of Materials Chemistry, 2012, 22(4): 1489-1497.
[38]  Yo C H, Ju J H, Kim G O, et al. C-rate and temperature dependence of electrochemical performance of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode materials before and after Co3(PO4)2 coating[J]. Ionics, 2011, 18(1/2): 19-25.
[39]  Ahn D, Koo Y -M, Kim M G, et al. Polyaniline nanocoating on the surface of layered Li[Li0.2Co0.1Mn0.7]O2 nanodisks and enhanced cyclability as a cathode electrode for rechargeable lithium-Ion battery[J]. The Journal of Physical Chemistry C, 2010, 114(8): 3675-3680.
[40]  Zhang H Z, Qiao Q, Li G, et al. Surface nitridation of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as cathode material for lithium-ion battery[J]. Journal of Materials Chemistry, 2012, 22(26): 13104-13109.
[41]  Abouimrane A, Compton O C, Deng H, et al. Improved rate capability in a high-capacity layered cathode material via thermal reduction[J]. Electrochemical and Solid-State Letters, 2011, 14(9): A126-A129.
[42]  Yu D Y W, Yanagida K, Nakamura H. Surface modification of Li-excess Mn-based cathode materials[J]. Journal of The Electrochemical Society, 2010, 157(11): A1177-A1182.
[43]  Zheng J, Deng S, Shi Z, et al. The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material[J]. Journal of Power Sources, 2013, 221: 108-113.
[44]  Du K(杜柯), Huang X(黄霞),Yang F(杨菲), et al. Modification of Li[Li0.2Ni0.2Mn0.6]O2 as cathode material for rechargeable lithium batteries by acid-leaching[J]. Chinese Journal of Inorganic Chemistry(无机化学学报), 2012, 28(5): 983-988.
[45]  Wang D P, Belharouak I, Zhou G W, et al. Nanoarchitecture multi-structural cathode materials for high capacity lithium batteries[J]. Advanced Functional Materials, 2013, 23(8): 1070-1075.
[46]  Ko Y N, Kim J H, Lee J K, et al. Electrochemical properties of nanosized LiCrO2·Li2MnO3 composite powders prepared by a new concept spray pyrolysis[J]. Electrochimica Acta, 2012, 69: 345-350.
[47]  Martha S K, Nanda J, Veith G M, et al. Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2[J]. Journal of Power Sources, 2012, 199: 220-226.
[48]  Gao J, Kim J, Manthiram A. High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries[J]. Electrochemistry Communications, 2009, 11(1): 84-86.
[49]  Wu Y, Manthiram A. High capacity, surface-modified layered Li[Li(1?x)/3Mn(2?x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss[J]. Electrochemical and Solid-State Letters, 2006, 9(5): A221-A224.
[50]  Song B, Liu Z, Lai M O, et al. Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material[J]. Physical Chemistry Chemical Physics, 2012, 14(37): 12875-12883.
[51]  Park K S, Benayad A, Park M S, et al. Suppression of O2 evolution from oxide cathode for lithium-ion batteries: VOx-impregnated 0.5Li2MnO3-0.5LiNi0.4Co0.2Mn0.4O2 cathode[J]. Chemical Communications, 2010, 46(23): 4190-4192.
[52]  Jarvis K A, Deng Z, Allard L F, et al. Understanding structural defects in lithium-rich layered oxide cathodes[J]. Journal of Materials Chemistry, 2012, 22(23): 11550-11555.
[53]  Jiang Y, Yang Z, Luo W, et al. Facile synthesis of mesoporous 0.4Li2MnO3·0.6LiNi2/3Mn1/3O2 foam with superior performance for lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(30): 14964-14969.
[54]  Kim H J, Jung H G, Scrosati B, et al. Synthesis of Li[Li1.19Ni0.16Co0.08Mn0.57]O2 cathode materials with a high volumetric capacity for Li-ion batteries[J]. Journal of Power Sources, 2012, 203: 115-120.
[55]  Kim M G, Jo M, Hong Y S, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode[J]. Chemical Communications, 2009, (2): 218-220.
[56]  Scott I D, Jung Y S, Cavanagh A S, et al. Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications[J]. Nano Letters, 2011, 11(2): 414-418.
[57]  Jiang K C, Xin S, Lee J S, et al. Improved kinetics of LiNi1/3Mn1/3Co1/3O2 cathode material through reduced graphene oxide networks[J]. Physical Chemistry Chemical Physics, 2012, 14(8): 2934-2939.
[58]  Lee H W, Muralidharan P, Ruffo R, et al. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries[J]. Nano Letters, 2010, 10(10): 3852-3856.
[59]  Yuan L X, Wang Z H, Zhang W X, et al. Development and challenges of LiFePO4 cathode material for lithium-ion batteries[J]. Energy & Environmental Science, 2011, 4(2): 269-284.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133