Shao Y, Wang X, Engelhard M, et al. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries[J]. Journal of Power Sources, 2010, 195(13): 4375-4379.
[2]
Zhu H, Zhang Y, Yue L, et al. Graphite-carbon nanotube composite electrodes for all vanadium redox flow battery[J]. Journal of Power Sources, 2008, 184(2): 637-640.
[3]
Wang W H, Wang X D. Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery[J]. Electrochimica Acta, 2007, 52(24): 6755-6762.
[4]
Sun B, Skyllas-Kazacos M. Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments[J]. Electrochimica Acta, 1992, 37(13): 2459-65.
[5]
Sun B, Skyllas-Kazacos M. Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment[J]. Electrochimica Acta, 1992, 37(7): 1253-1260.
[6]
Yue L, Li W, Sun F, et al. Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery[J]. Carbon, 2010, 48(11): 3079-3090.
[7]
Han P, Wang H, Liu Z, et al. Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox battery[J]. Carbon, 2011, 49(2): 693-700.
[8]
Ago H, Kugler T, Cacialli F, et al. Work functions and surface functional groups of multiwall carbon nanotubes[J]. The Journal of Physical Chemistry B, 1999, 103(38): 8116-8121.
[9]
Honda K, Rao T N, Tryk D, et al. Electrochemical characterization of the nanoporous honeycomb diamond electrode as an electrical double-layer capacitor[J]. Journal Electrochemical Society, 2000, 147(2): 659-664.
[10]
Bismarck A, Kumru M E, Springer J. Influence of oxygen plasma treatment of PAN-based carbon fibers on their electrokinetic and wetting properties[J]. Journal of Colloid and Interface Science, 1999, 210(1): 60-72.
[11]
Okajima K, Ohta K, Sudoh M. Capacitance behavior of activated carbon fibers with oxygen-plasma treatment[J]. Electrochimica Acta, 2005, 50(11): 2227-22231.
[12]
Park J M, Kim D S, Kim S R. Improvement of interfacial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wet ability[J]. Journal of Colloid and Interface Science, 2003, 264(2): 431-445.
[13]
Wu G. Oxygen plasma treatment of high performance fibers for composites[J]. Materials Chemistry and Physics, 2004, 85(1): 81-87.