全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2013 

不同掺杂元素的钛基PbO2电极对苯酚电催化氧化性能的影响

, PP. 59-64

Keywords: PbO2,电极,掺杂,电催化氧化,苯酚

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文在SnO2-Sb2O5氧化物为中间层的钛基体上,采用电沉积法制备了无掺杂的Ti/PbO2、掺杂F的Ti/PbO2(Ti/PbO2+F)和掺杂纳米Co3O4粒子的Ti/PbO2电极(Ti/PbO2+Nano-Co3O4).用X射线衍射(XRD)和扫描电镜(SEM)分析和观察了电极材料的组成、结构和形貌,并通过电化学方法研究了这三种电极对苯酚的电催化氧化性能.结果表明,Ti/PbO2+F电极的析氧电位较Ti/PbO2电极的发生明显正移,但其苯酚的氧化峰和析氧峰并不能分开;而Ti/PbO2+Nano-Co3O4电极虽然其析氧电位负移,但对苯酚的氧化峰出现在析氧峰之前.这一结果表明,体系存在着某种反应特别快的瞬态中间体,即在水分子被解离之前已与苯酚发生了反应,从而更有利于苯酚的转化和降解.

References

[1]  Stucki S, K?tz R, Carcer B, et al. Electrochemical waste water treatment using high overvotage anodes. Part Ⅱ: Anode performance and applications[J]. Journal of Applied Electrochemistry, 1991, 21: 99-104.
[2]  Lin H B(林海波), Wu Z Y(伍振毅), Huang W M(黄卫民), et al. Development and direction of electrochemical technologies for industrial wastewater treatment[J]. Chemical Industry and Engineering Progress(化工进展), 2008, 27(2): 223-230.
[3]  Couper A. M, Pletcher D, Frank C, et al. Electrode materials for electrosynthesis[J]. Chemical Reviews, 1990, 90(5): 837-865.
[4]  Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109(12): 6541-6569.
[5]  Tahar N B, Savall A. Electrochemical degradation of phenol in aqueous solution on bismuth doped lead dioxide: A comparison of the activities of various electrode formulations[J]. Journal of Applied Electrochemistry, 1999, 29: 277-283.
[6]  Borras C, Laredo T, Scharifker B R. Competitive electrochemical oxidation of p-chlorophenol and p-nitrophenol on Bi-doped PbO2[J]. Electrochimica Acta, 2003, 48(19): 775-2780.
[7]  Zhou M H, Dai Q Z, Lei L C, et al. Long life modified lead dioxide anode for organic wastewater treatment: Electrochemical characteristics and degradation mechanism[J]. Environmental Science & Technology, 2005, 39(1): 363-370.
[8]  Velichenko A B, Girenko D V, Kovalyov S V, et al. Lead diaoxide electrodeposition and its application: Influence of fluoride and iron ions[J]. Journal of Electroanalytical Chemistry, 1998, 454: 203-208.
[9]  Velichenko A B, Amadelli R, Baranova E A, et al. Electrodeposition of Co-doped lead dioxide and its physicochemical properties[J]. Journal of Electroanalytical Chemistry, 2002, 527(1/2): 56-64.
[10]  Dalchiele E A, Cattarin S, Musiani M, et al. Electrodeposition studies in the MnO2+PbO2 system: Formation of Pb3Mn7O15[J]. Journal of Applied Electrochemistry, 2000, 30(1): 117-120.
[11]  Sandro C, Marco M. Electrosynthesis of nanocomposite materials for electrocatalysis[J]. Electrochimica Acta, 2007, 52(8): 2796-2805.
[12]  Velichenko A B, Devilliers D. Electrodeposition of fluorine-doped lead dioxide[J]. Journal of Fluorine Chemistry, 2007, 128(4): 269-276.
[13]  Dan Y Y, Lu H Y, Liu X L, et al. Ti/PbO2+nano-Co3O4 composite electrode material for electrocatalysis of O2 evolution in alkaline solution[J]. International Journal of Hydrogen Energy, 2011, 36(3): 1949-1954.
[14]  Hine F, Yasuda M, Lida T, et al. On the RuO2-TiO2 interlayer of PbO2 electrodeposited Ti anode[J]. Electrochimica Acta, 1984, 29: 1447-1452.
[15]  Sirés I, Low C T J, Ponce-de-León C, F.C. et al. The deposition of nanostructured β-PbO2 coatings from aqueous methanesulfonic acid for the electrochemical oxidation of organic pollutants[J]. Electrochemistry Communications, 2010, 12(1): 70-74.
[16]  Comninellis C H, Pulgarin C. Anodic oxidation of phenol for waste water treatment[J]. Journal of Applied Electrochemistry, 1991, 21: 703-708.
[17]  Comninellis C, Pulgarin C. Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes[J]. Journal of Applied Electrochemistry, 1993, 23: 108-112.
[18]  Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic Pollutants for waste water treatment[J]. Electrochimica Acta, 1994, 39(11/12): 1857-1862.
[19]  Ca?izares P, Martínez F, Díaz M, et al. Electrochemical oxidation of aqueous phenol wastes using active and non-active electrodes[J]. Journal of The Electrochemical Society, 2002, 149(8): D118-D124.
[20]  Ca?izares P, García-Gómez J, Lobato J, et al. Modeling of wastewater electro-oxidation processes part II. Application to active electrodes[J]. Industrial & Engineering Chemistry Research, 2004, 43(9): 1923-1931.
[21]  Ca?izares P, García-Gómez J, Lobato J, et al. Modeling of wastewater electro-oxidation processes part I. General description and application to inactive electrodes[J]. Industrial & Engineering Chemistry Research, 2004, 43(9): 1915-1922.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133