Li W S(李伟善). Research progresses on materials of lithium ion battery for energy storage[J]. Advance in New and Renewable Energy(新能源进展), 2013, 1(1): 95-105.
[2]
Xing L D(邢丽丹), Xu M Q(许梦清), Li W S(李伟善). Research processes on high-voltage electrolyte of lithium ion battery[J]. Science in China B(中国科学B辑 化学), 2014, 44(8): 1289-1297.
[3]
Xu K, Lam Y F, Sheng S, et al. Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry[J]. Journal of Physical Chemistry C, 2007, 111(20): 7411-7421.
[4]
Xing L D, Vatamanu J, Bedrov D, et al. Electrode/electrolyte interface in sulfolane-based electrolytes for Li ion batteries: A molecular dynamics simulation study[J]. Journal of Physical Chemistry C, 2012, 116(45): 23871-23881.
[5]
Wang Y T, Xing L D, Li W S, et al. Why do sulfone-based electrolytes show stability at high voltages? Insight from density functional theory[J]. Journal of Physical Chemistry Letter, 2013, 4(22): 3992-3999.
[6]
Li S, Cao Z, Peng Y, et al. Molecular dynamics simulation of LiTFSI-acetamide electrolytes: Structural properties[J]. Journal of Physical Chemistry B, 2008, 112(20): 6398-6410.
[7]
Tsunekawa H, Narumi A, Sano M, et al. Solvation and ion association studies of LiBF4-propylenecarbonate and LiBF4-propylene carbonate-trimethyl phosphate solutions[J]. Journal of Physical Chemistry B, 2003, 107(39): 10962-10966.
[8]
Wang Y X, Balbuena P B. Theoretical insights into the reductive decompositions of propylene carbonate and vinylene carbonate: Density functional theory studies[J]. Journal of Physical Chemistry B, 2002, 106(17): 4486-4495.
[9]
Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision A[CP]. Gaussian, Inc., Wallingford, CT, 2009.
[10]
Bogle X, Vazquez R, Greenbaum S, et al. Understanding Li+-solvent interaction in nonaqueous carbonate electrolytes with 17O NMR[J]. Journal of Physical Chemistry Letter, 2013, 4(10): 1664-1668.
[11]
Naejus R, Coudert R, Willmann P, et al. Ion solvation in carbonate-based lithium battery electrolyte solutions[J]. Electrochimica Acta, 1998, 43(3/4): 275-284.
[12]
Xing L D, Borodin O, Grant S, et al. A density function theory study of the role of anions on the oxidative decomposition reaction of propylene carbonate[J] Journal of Physical Chemistry A, 2011, 115(47): 13896-13905.
[13]
Fukushima T, Matsuda Y, Hashimoto H, et al. Studies on solvation of lithium ions in organic electrolyte solutions by electrospray ionization-mass spectroscopy[J]. Electrochemical and Solid-State Letter, 2001, 4(8): A127-A128.
[14]
Li T, Balbuena P B. Theoretical studies of lithium perchlorate in ethylene carbonate, propylene carbonate, and their mixtures[J]. Journal of The Electrochemical Society, 1999, 146(10): 3613-3622.
[15]
Masia M, Probst M, Rey R. Ethylene carbonate-Li+: A theoretical study of structural and vibrational properties in gas and liquid phases[J]. Journal of Physical Chemistry B, 2004, 108(6): 2016-2027.
[16]
Brooksby P A, Fawcett W R. Infrared (attenuated total reflection) study of propylene carbonate solutions containing lithium and sodium perchlorate[J]. Spectrochim Acta A, 2006, 64(2): 372-382.
[17]
Kondo K, Sano M, Hiwara A, et al. Conductivity and solvation of Li+ ions of LiPF6 in propylene carbonate solutions[J]. Journal of Physical Chemistry B, 2000, 104(20): 5040-5044.
[18]
Xing L D, Li W S, Wang C Y, et al. Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium-ion battery use[J]. Journal of Physical Chemistry B, 2009, 113(52): 16596-16602.