全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2014 

Au@SiO2膜/Ti电极吸附吡啶的表面增强拉曼光谱研究

DOI: 10.13208/j.electrochem.130888, PP. 272-276

Keywords: 表面增强拉曼光谱,钛电极,Au@SiO2纳米粒子,吡啶

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于壳层隔绝纳米粒子增强拉曼光谱技术,合成了Au@SiO2纳米粒子,并对其进行了相关表征.结果表明,包裹的二氧化硅层连续、致密,Au@SiO2膜/Ti电极上可获得金属钛电极上吸附吡啶分子的高质量表面增强拉曼光谱(SERS)信号.通过Pt、Ni电极的测试,证实该信号源于吸附在基底表面的吡啶分子.此外,Au@SiO2膜/Ti电极上吸附吡啶分子的现场SERS光谱研究表明,在-0.1V~-0.6V电位区间,吡啶分子平躺吸附,从-0.6V起吸附的吡啶分子由平躺逐转变为垂直,而当电位为-1.2V时,电极表面析氢,吡啶脱附.

References

[1]  Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nature Physical Science, 1973, 241: 20-22.
[2]  Bilmes S A, Rubim J C, Otto A. SERS from pyridine adsorbed on electrodispersed platinum electrodes[J]. Chemical Physics Letters, 1989, 159(1): 89-96.
[3]  Walters V A, Snavely D L, Colson S D, et al. New vibrational constants for pyridine from low-temperature and high-resolution infrared spectra[J]. The Journal of Physical Chemistry, 1986, 90(4): 592-597.
[4]  Wiberg K B, Walters V A, Wong K N, et al. Azines: Vibrational force field and intensities for pyridine[J]. The Journal of Physical Chemistry, 1984, 88(24): 6067-6075.
[5]  Zhao L L, Jensen L, Schatz G C. Pyridine-Ag20 cluster: A model system for studying surface-enhanced Raman scattering[J]. Journal of the American chemical society, 2006, 128(9): 2911-2919.
[6]  Huang Q J, Lin X F, Yang Z L, et al. An investigation of the adsorption of pyrazine and pyridine on nickel electrodes by in situ surface-enhanced Raman spectroscopy[J]. Journal of Electroanalytical Chemistry, 2004, 563(1): 121-131.
[7]  Moskovits M, Suh J S. Surface selection rules for surface-enhanced Raman spectroscopy: Calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver[J]. The Journal of physical Chemistry, 1984, 88(23): 5526-5530.
[8]  Fushimi K, Okawa T, Azumi K, et al. Oxide film on a polycrystalline titanium electrode observed with a scanning electrochemical microscope[J]. Journal of the Electrochemical Society, 2000, 147(2): 524-529.
[9]  Parkera E R, Thibeaultb B J, Aimic M F, et al. Inductively coupled plasma etching of bulk titanium for MEMS applications[J]. Journal of the Electrochemical Society, 2005, 152(10): C675-C683.
[10]  Riedel N A, Williams J D, Popat K C. Ion beam etching titanium for enhanced osteoblast response[J]. Journal of Materials Science, 2011, 46(18): 6087-6095.
[11]  Ren B, Huang Q J, Cai W B, et al. Surface Raman spectra of pyridine and hydrogen on bare platinum and nickel electrodes[J]. Journal of Electroanalytical Chemistry, 1996, 415(1/2): 175-178.
[12]  Gao J S, Tian Z Q. Surface Raman spectroscopic studies of ruthenium, rhodium and palladium electrodes deposited on glassy carbon substrates[J]. Spectrochimica Acta part A: Molecular and Biomolecular Spectroscopy, 1997, 53(10): 1595-1600.
[13]  Huang Q J, Yao J L, Gu R A, et al. Surface Raman spectroscopic studies of pyrazine adsorbed onto nickel electrodes[J]. Chemical Physics Letters, 1997, 271(1/3): 101-106.
[14]  Qin W(秦维), Yao J L(姚建林), Gu R A(顾仁敖). Studies of surface-enhanced Raman spectroscopy on bare Ti electrode[J]. Spectroscopy And Spectral Analysis(光谱学与光谱分析), 2009, 29(12): 3300-3303.
[15]  Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464: 392-395.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133