全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2014 

钠离子电池正极材料Na2MnPO4F的23NaMASNMR谱研究

DOI: 10.13208/j.electrochem.140401, PP. 201-205

Keywords: 钠离子电池,正极材料,Na2MnPO4F,23NaMASNMR

Full-Text   Cite this paper   Add to My Lib

Abstract:

Na2MnPO4F材料是一种很有发展前景的钠离子电池正极材料,本文通过非原位XRD和固体核磁共振技术研究该材料充放电结构变化(晶体结构与局域Na位).非原位XRD测试发现,充电过程在2θ为31o和36o左右出现新的衍射峰,表明钠脱出后电极上有中间相物质生成.23NaMASNMR谱图的-209ppm、-258ppm和-295ppm三个谱峰分别对应于该材料结构中Na1+Na2位、Na3位和Na4位.非原位23NaMASNMR谱研究发现,充电过程中-209ppm处信号峰面积比例减小,表明Na1和Na2位的Na比Na3和Na4位先脱出.充电至4.2V,-132ppm和-330ppm处出现中间相物质的信号峰;而放电过程则相反.

References

[1]  Grey C P, Lee Y J. Lithium MAS NMR studies of cathode materials for lithium-ion batteries[J]. Solid State Sciences, 2003, 5(6): 883-894.
[2]  Gong Z L, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries[J]. Energy & Environmental Science, 2011, 4(9): 3223-3242.
[3]  Zhong G M (钟贵明), Hou X (侯旭), Chen S S (陈守顺), et al. Solid-state NMR study of electrode/electrolyte materials for lithium ion batteries (in Chinese)[J]. Chinese Science Bulletin (科学通报), 2013, 58(32): 3287-3300.
[4]  Jian Z, Yuan C, Han W, et al. Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries[J]. Advanced Functional Materials, 2014, doi: 10.1002/adfm.201400173.
[5]  Davis L J M, Heinmaa I, Goward G R. Study of lithium dynamics in monoclinic Li3Fe2(PO4)3 using 6Li VT and 2D exchange MAS NMR spectroscopy[J]. Chemistry of Materials, 2009, 22(3): 769-775.
[6]  Zheng Y, Zhang P, Wu S Q, et al. First-principles investigations on the Na2MnPO4F as a cathode material for Na-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160(6): A927-A932.
[7]  Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[8]  Palomares V, Casas-Cabanas M, Castillo-Martinez E, et al. Update on Na-based battery materials. A growing research path[J]. Energy & Environmental Science, 2013, 6(8): 2312-2337.
[9]  Pan H, Hu Y S, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338-2360.
[10]  Barpanda P, Chotard J N, Recham N, et al. Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes[J]. Inorganic Chemistry, 2010, 49(16): 7401-7413.
[11]  Hao X G (郝小罡), Liu Z G (刘子庚), Gong Z L (龚正良), et al. In situ XRD and solid state NMR characterization of Na3V2(PO4)2F3 as cathode material for lithium-ion batteries[J]. Scientia Sinica Chimica (中国科学:化学), 2012, 42(1): 38-46.
[12]  Ellis B L, Makahnouk W R M, Makimura Y, et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries[J]. Nature Materials, 2007, 6(10): 749-753.
[13]  Wu X, Zheng J, Gong Z, et al. Sol-gel synthesis and electrochemical properties of fluorophosphates Na2Fe1-xMnxPO4F/C (x = 0, 0.1, 0.3, 0.7, 1) composite as cathode materials for lithium ion battery[J]. Journal of Materials Chemistry, 2011, 21(46): 18630-18637.
[14]  Kim S W, Seo D H, Kim H, et al. A comparative study on Na2MnPO4F and Li2MnPO4F for rechargeable battery cathodes[J]. Physical Chemistry Chemical Physics, 2012, 14(10): 3299-3303.
[15]  Zhong Y J (钟艳君), Li J T (李君涛), Wu Z G (吴振国), et al. Synthesis of Na2MnPO4F/C with different carbon sources and their performances as cathode for lithium ion battery[J]. Acta Physico-Chimica Sinica (物理化学学报), 2013, 29(9): 1989-1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133