Rou?ar I, Cezner V. Experimental determination and calculation of parasitic currents in bipolar electrolyzers with application to chlorate electrolyzer[J]. Journal of The Electrochemical Society, 1974, 121(5): 648-651.
[2]
Katz M. Analysis of electrolyte shunt currents in fuel cell power plants[J]. Journal of The Electrochemical Society, 1978, 125(4): 515-520.
[3]
Kanari K, et al. Numerical analysis on shunt current loss in a redox flow battery[C]. Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 1989 (57): 517-522.
[4]
Burney H S, White R E. Predicting shunt currents in stacks of bipolar plate cells with conducting manifolds[J]. Journal of The Electrochemical Society, 1986, 135(7): 1609-1612.
[5]
Codina G, Aldaz A. Scale-up studies of an Fe/Cr redox flow battery based on shunt current analysis[J]. Journal of Applied Electrochemistry, 1992, 22: 668-674.
[6]
Minghua Li, et al. A Study of output terminal voltage modeling for redox flow battery based on charge and discharge experiments[C]//Power Conversion Conference-Nagoya, April 2-5, 2007: 221-225.
[7]
Sukkar T, Skyllas-Kazacos M. Water transfer behaviour across cation exchange membranes in the vanadium redox battery[J]. Journal of Membrane Science, 2003, 222(1/2): 235-247.
[8]
Enomoto K, et al. Evaluation study about redox flow battery response and its modeling[C]. IEEJ Trans. PE, 2002, (122-B): 554-559.
[9]
Brian E B, Pell W G, Liu T C. Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries[J]. Journal of Power Sources, 1997, 65(1/2): 53-59.