全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电化学  2014 

中温固体氧化物燃料电池LaNi0.6Fe0.4O3-δ-Gd0.2Ce0.8O2梯度复合阴极制备及交流阻抗性能

DOI: 10.13208/j.electrochem.121206, PP. 45-50

Keywords: 固体氧化物燃料电池,LaNi0.6Fe0.4O3-&delta,阴极,梯度阴极,极化电阻,交流阻抗

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用丝网印刷和共烧结制备LaNi0.6Fe0.4O3-δ(LNF)-Gd0.2Ce0.8O2(GDC)梯度复合阴极/Gd0.2Ce0.8O2/Sc0.1Zr0.9O1.95(ScSZ)/Gd0.2Ce0.8O2/LaNi0.6Fe0.4O3-δ(LNF)-Gd0.2Ce0.8O2(GDC),组成梯度复合阴极对称电池.实验表明,在750oC工作温度下单层70%LNF-30%GDC(文中均指质量百分比)复合阴极的极化电阻为0.581Ω·cm2,而三层60%LNF-40%GDC/70%LNF-30%GDC/100%LNF复合阴极的极化电阻最小(0.452Ω·cm2).由于阴极组成在ScSZ电解质和LNF阴极之间呈梯度变化,因此获得了最佳的阴极/电解质界面,大大加快了三相界面或气体/阴极/电解质三相接触点反应区的扩散,其电荷传递电阻Rct和浓差极化电阻Rd均减小,因而具有最低的阴极极化电阻值.

References

[1]  Lv S Q (吕世权), Long G H (龙国徽), Meng X W (孟祥伟), et al. Perovskite cathode for solid oxide fuel cells[J]. Chinese Journal of Power Source (电源技术), 2010, 34(7): 734-737.
[2]  Guo Y B (郭友斌), Lu L H (陆丽华), Chu L (储凌), et al. Research progress in perovskite-like cathode for intermediate temperature solid oxide fuel cells[J]. Bulletin of the Chinese Ceramic Society (硅酸盐通报), 2009, 28(5): 991-996.
[3]  Wu L W (邬理伟), Zheng Y P (郑颖平), Sun Y M (孙岳明), et al. Research progress in composite cathode of SOFC[J]. Chinese Battery Industry (电池工业), 2010, 15(1): 53-56.
[4]  Kadowaki T, Shiomitsu T, Marsuda E, et al. Applicability of heat resisting alloys to the separator of planar type solid oxide fuel cell[J]. Solid State Ionics, 1993, 67(1/2): 65-69.
[5]  Yang Z, Weil K S, Paxton D M, et al. Selection and evaluation of heat-resistant alloys for SOFC interconnect applications[J]. Journal of the Electrochemical Society, 2003, 150(9): A1188-A1201.
[6]  Horita T, Xiong Y, Kishimoto H, et al. Application of Fe-Cr alloys to solid oxide fuel cells for cost-reduction: Oxidation behavior of alloys in methane fuel[J]. Journal of Power Sources, 2004, 131(1/2): 293-298.
[7]  Tucker M C, Kurokawa H, Jacobson C P, et al. A fundamental study of chromium deposition on solid oxide fuel cell cathode materials[J]. Journal of Power Sources, 2006, 160(1): 130-138.
[8]  Konysheva E, Penkalla H, Wessel E, et al. Chromium poisoning of perovskite cathodes by the ODS alloy Cr5Fe1Y2O3 and the high chromium ferritic steel crofer22APU[J]. Journal of the Electrochemical Society, 2006, 153(4): A765-A773.
[9]  Yokokawa H, Horita T, Sakai N, et al. Thermodynamic considerations on Cr poisoning in SOFC cathodes[J]. Solid State Ionics, 2006, 177(35/36): 3193-3198.
[10]  Liu D J, Almer J, Cruse T. Characterization of Cr poisoning in a solid oxide fuel cell cathode using a high energy X-ray microbeam[J]. Journal of the Electrochemical Society, 2010, 157(5): B744-B750.
[11]  Badwal S P S, Deller R, Foger K, et al. Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells[J]. Solid State Ionics, 1997, 99(3/4): 297-310.
[12]  Horita T, Xiong Y P, Kishimoto H, et al. Chromium poisoning and degradation at (La,Sr)MnO3 and (La,Sr)FeO3 cathodes for solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2010, 157(5): B614-B620.
[13]  Jiang S P, Zhang J P, Apateanu L, et al. Deposition of chromium species at Sr-Doped LaMnO3 electrodes in solid oxide fuel cells: III. Effect of air flow[J]. Journal of the Electrochemical Society 2001, 148(7): C447-C455.
[14]  Chiba R, Yoshimura F, Sakurai Y. An investigation of LaNi1-xFexO3 as a cathode material for solid oxide fuel cells[J]. Solid State Ionics, 1999, 124(3/4): 281-288.
[15]  Zhen Y D, Tok A I Y, Jiang S P, et al. La(Ni,Fe)O3 as a cathode material with high tolerance to chromium poisoning for solid oxide fuel cells[J]. Journal of Power Sources, 2007, 170(1): 61-66.
[16]  Orui H, Watanabe K, Chiba R, et al. Application of LaNi(Fe)O3 as SOFC cathode[J]. Journal of the Electrochemical Society, 2004, 151(9): A1412-A1417.
[17]  Bevilacqua M, Montini T, Tavagnacco C, et al. Preparation, characterization, and electrochemical properties of pure and composite LaNi0.6Fe0.4O3-based cathodes for IT-SOFC[J]. Chemistry of Materials, 2007, 19: 5926-5936.
[18]  Hashimoto S I, Kammer K, Larsen P H, et al. A study of Pr0.7Sr0.3Fe1-xNixO3-δ as a cathode material for SOFCs with intermediate operating temperature[J]. Solid State Ionics, 2005, 176: 1013-1020.
[19]  Jain S R, Adiga K C, Vemeker V R P. A new approach to thermochemical calculation of condensed fuel-oxidizer mixtures[J]. Combustion and Flame, 1981, 40(1): 71-76.
[20]  Liu H (刘珩), Huang B (黄波), Zhu X J (朱新坚). Preparation and Characterization of the LaNi0.6Fe0.4O3-δ cathode for intermediate temperature solid oxide fuel cell[J]. Journal of Electrochemistry(电化学), 2011, 17(4): 421-426.
[21]  Huang B, Ye X F, Wang S R, et al. Performance of Ni/ScSZ cermet anode modified by coating with Gd0.2Ce0.8O2 for a SOFC running on methane fuel[J]. Journal of Power Sources, 2006, 162(2): 1172-1181.
[22]  Zhou W, Ran R, Shao Z, et al. Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8 Fe0.2O3-δ cathodes prepared via electrodes deposition[J]. Electrochimica Acta, 2008, 53(13): 4370-4380.
[23]  Adler S B. Limitations of charge-transfer models for mixed-conducting oxygen electrodes[J]. Solid State Ionics, 2000, 135(1/4): 603-612.
[24]  Fu C, Sun K, Zhang N, et al. Electrochemical characteristics of LSCF-GDC composite cathodes for intermediate temperature SOFC[J]. Electrochimica Acta, 2007, 52(13): 4589-4594.
[25]  Qiang F, Sun K N, Zhang N Q, et al. Characterization of electrical properties of GDC doped A-site deficient LSCF based composite cathode using impedance spectroscopy[J]. Journal of Power Sources, 2007, 168: 338-345.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133